Чтение онлайн

на главную

Жанры

Шрифт:

{292}

ние, величины «неделимые». Это было бы опять-таки скачком от абстрактного отношения к таким ого членам, которые должны были бы сами по себе, вне своего соотношения^ иметь известное значение, как неделимые, как нечто·, что было бы одним, безотносительным.

Чтобы предостеречь против этого недоразумения, он, кроме того, напоминает, что последние отношения суть не отношения последних величин, а только пределы, к кото-рым отношения безгранично убывающих величин приближаются больше, чем всякая данная, т. е. конечная разность, но которых они не преступают, чтобы стать ничем. — Под последними величинами можно было бы именно понимать, как мы уже сказали, неделимые или одни. Но из определения последнего отношения устранено представление как о безразличном безотносительном одном, так и о конечном определенном количестве. — Но не нужно было бы ни безграничного убывания, которое Ньютон приписывает определенному количеству

и которое лишь служит выражением бесконечного прогресса, ни определения делимости, которое здесь уже больше не имеет никакого непосредственного значения, если бы требуемое определение было развито далее в понятие некоторого такого определения величины, которое есть исключительно лишь момент отношения.

Касательно сохранения отношения в исчезающих определенных количествах мы встречаем у других авторов (например, у Парно, Reflexions sur la metaphysique du Calcul infinitesimal) выражение, что в силу закона непрерывности исчезающие величины прежде, чем исчезнуть, продолжают сохранять то отношение, из которого они происходят. — Это представление выражает собою истинную природу дела, поскольку здесь разумеется не та непрерывность определенного количества, которую оно являет нам в бесконечном прогрессе, непрерывность, заключающаяся в том, что определенное количество так продолжается в своем исчезновении, что по ту сторону его снова возникает лишь некоторое конечное определенное количество, некоторый новый член ряда. Однако непрерывное движение вперед всегда представляют себе так, что проходятся значения, которые еще

{293}

суть конечные определенные количества. Напротив, в том переходе, который совершается в истинное бесконечное, непрерывным оказывается отношение; оно настолько непрерывно и сохраняется, что переход исключительно только и состоит в том, что он выделяет отношение в чистом виде и заставляет исчезнуть безотносительное определение, т. е. то обстоятельство, что определенное количество, являющееся членом отношения, еще есть определенное количество также и тогда, когда оно положено вне этого соотношения. — Это очищение количественного отношения есть постольку не что иное, как то, что имеет место, когда некоторое эмпирическое существование (Dasein) постигается через понятие (begriffen wird). Эмпирическое существование благодаря этому поднимается выше самого себя таким образом, что его понятие содержит те же определения, которые содержит оно само, но охваченные в их существенности и вдвинутые в единство понятия, в котором они потеряли свое безразличное, чуждое понятию существование (Bestehen).

Столь же интересна и другая форма ньютоновой трактовки интересующих нас величин, а именно, рассмотрение их как производящих величин или начал.

Производная величина (genita) — это произведение или частное, корни, прямоугольники, квадраты, а также стороны прямоугольников, квадратов, — вообще, конечная величина. — «Рассматривая ее как переменную, как возрастающую или убывающую в постоянном движении и течении, я понимаю под названием моментов ее моментальные приращения или убывания. Но не следует принимать эти моменты за частицы, имеющие определенную величину (particulae finitae).

Такие частицы суть не самые моменты, а величины, произведенные из моментов; под последними же следует понимать находящиеся в становлении прищипы или начала конечных величин». — Ньютон отличает здесь определенное количество от него же самого, рассматривает его двояко: так, как оно есть продукт или наличие сущее, и так, как оно есть в своем становлении, в своем начале и принципе, то есть как оно есть в своем понятии или — здесь

{294}

это равнозначно — в своем качественном определении; в последнем количественные различия, бесконечные приращения или убывания суть лишь моменты; только уже ставшее есть нечто перешедшее в безразличие наличного бытия и во внешность, — определенное количество. — Но если философия истинного понятия и должна признать эти приведенные касательно приращений или убываний определения бесконечного, то «мы должны вместе с тем сразу же заметить, что самые формы приращения и т. д. имеют место внутри категории непосредственного определенного количества и вышеуказанного непрерывного движения вперед, и что представления о приращении, приросте, увеличении? на dx или i и т. д. должны рассматриваться скорее как имеющиеся в этих методах основные недостатки, как постоянное препятствие к выделению в чистом виде определения качественного момента количества из представления об обычном определенном количестве.

По сравнению с указанными определениями является очень отсталым предоставление о бесконечно-малых величинах, содержащееся также и в самих представлениях о приращении или убывании. Согласно представлению о бесконечно-малых величинах они носят такой характер, что следует пренебрегать не только ими самими по отношению к конечным величинам, но также их высшими

порядками по отношению к низшим, а равно произведениями нескольких таких величин по отношению к одной. — У Лейбнищ особенно ярко выступает это требование о таком пренебрежение, применению какового давали место также и предыдущие изобретатели методов, касающихся этих величин. Именно это обстоятельство сообщает указанному исчислению при всем выигрыше в удобстве видимость неточности и явной неправильности хода его действий. — Вольф стремился сделать это пренебрежение величинами понятными по обычному своему способу делать популярными излагаемые им вопросы, т. е. путем нарушения чистоты понятия и подстановки на его место неправильных чувственных представлений. А именно, он сравнивает пренебрежение бесконечно малыми разностями высших порядков относи-

{295}

тельно низших с образом действия геометра, измерение которым высоты горы нисколько не делается менее точным, если ветер снесет песчинку с ее вершины, или с пренебрежением высотой домов и башен при вычислении» лунных затмений (Element. Mathes. univ., Tom I, El. Analys. math., P. II, С I, см. Schol.).

Если снисходительная справедливость (die Billigkeit) здравого человеческого рассудка и допускает такую неточность, то все геометры, напротив, отвергали такого рода представление. Сама собою напрашивается мысль, что в математической науке не идет речь о такой эмпирической точности и что математическое измерение путем ли вычислений или путем геометрических построений и доказательств совершенно отлично от землемерия, от измерения данных в опыте линий, фигур и т. п. Да и помимо того, как уже было указано выше, аналитики, сравнивая между собою результаты, получаемые строго геометрическим путем, с результатами, получаемыми посредством метода бесконечно малых разностей, доказывают, что они тождественны и что большая или меньшая точность здесь вовсе не имеет места.

А ведь само собою понятно, что абсолютно точный результат не мог бы получиться из неточного хода действия.

Однако, с другой стороны, несмотря на протесты против этого способа оправдания, никак нельзя обойтись без самого этого приема — без пренебрежения величиной на основании· ее незначительности. И в этом состоит трудность, заставляющая аналитиков стараться сделать понятным и устранить заключающуюся здесь бессмыслицу.

По этому вопросу следует главным образом привести мнение Эйлера, Полагая в основание общее определение Ньютона, он настаивает на том, что диференциальное исчисление рассматривает отношения приращений некоторой величины, причем, однако, бесконечно малая разность как таковая должна быть рассматриваема совершенно как нуль (Institut Calc. different., р. I, с. III). — Как это следует понимать, видно из вышеизложенного; бесконечно малая разность есть нуль лишь по количеству, а не качественный нуль; а как нуль по количеству, она есть лишь чистый

{296}

момент отношения. Она не есть различие на некоторую величину. Но именно потому, с одной стороны, вообще ошибочно называть моменты, именуемые бесконечно малыми величинами, также и приращениями или убываниями и разностями. В основании этого определения лежит предположение, что к первоначально имеющейся конечной величине нечто прибавляется или нечто от нее отнимается, что совершается некоторое вычитание или сложение, некоторое арифметическое, внешнее действие. Но что касается перехода от функции переменной величины к ее диференциалу, то по нему видно, что он носит совершенно другой характер, а именно, как мы уже разъяснили, он должен рассматриваться как сведение конечной функции к качественному отношению ее количественных определений. — С другой стороны, сразу бросается в глаза, что когда говорят, что приращения суть сами по себе нули и что рассматриваются лишь их отношения, то это само по себе ошибочно, ибо нуль уже не имеет вообще никакой определенности.

Это представление, стало быть, хотя и доходит до отрицания количества и определенно высказывает это отрицание, не схватывает вместе с тем последнего в его положительном значении качественных определений количества, которые, если пожелаем вырвать их из отношения и брать их как определенные количества, окажутся лишь нулями. — Лагранж (Theorie des fonct. analyt. Introd.) замечает о представлении пределов или последних отношений, что, хотя и можно очень хорошо представить себе отношение двух величин, покуда они остаются конечными, это отношение не дает рассудку ясного и определенного понятия, как только его члены становятся одновременно нулями. — И в (самом деле, рассудок должен пойти далее той чисто отрицательной стороны, что члены отношения суть как определенные количества нули, и понять их положительно как качественные моменты. — А то, что Эйлер (в указанном месте § 84 и сл.) прибавляет далее касательно данного им определения, чтобы показать, что две так называемые бесконечно малые величины, которые якобы суть не что иное, как нули, тем не менее находятся в отношении друг

Поделиться:
Популярные книги

Пенсия для морского дьявола

Чиркунов Игорь
1. Первый в касте бездны
Фантастика:
попаданцы
5.29
рейтинг книги
Пенсия для морского дьявола

Вечный. Книга II

Рокотов Алексей
2. Вечный
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Вечный. Книга II

Сумеречный Стрелок 4

Карелин Сергей Витальевич
4. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 4

Все не так, как кажется

Юнина Наталья
Любовные романы:
современные любовные романы
7.70
рейтинг книги
Все не так, как кажется

Архил...?

Кожевников Павел
1. Архил...?
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Архил...?

Газлайтер. Том 16

Володин Григорий Григорьевич
16. История Телепата
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Газлайтер. Том 16

Идущий в тени 4

Амврелий Марк
4. Идущий в тени
Фантастика:
боевая фантастика
6.58
рейтинг книги
Идущий в тени 4

Кодекс Охотника. Книга VII

Винокуров Юрий
7. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
4.75
рейтинг книги
Кодекс Охотника. Книга VII

Дворянская кровь

Седой Василий
1. Дворянская кровь
Фантастика:
попаданцы
альтернативная история
7.00
рейтинг книги
Дворянская кровь

Мимик нового Мира 4

Северный Лис
3. Мимик!
Фантастика:
юмористическая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 4

Сумеречный Стрелок 3

Карелин Сергей Витальевич
3. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 3

Начальник милиции

Дамиров Рафаэль
1. Начальник милиции
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Начальник милиции

Без шансов

Семенов Павел
2. Пробуждение Системы
Фантастика:
боевая фантастика
рпг
постапокалипсис
5.00
рейтинг книги
Без шансов

Сумеречный Стрелок 5

Карелин Сергей Витальевич
5. Сумеречный стрелок
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Сумеречный Стрелок 5