Наука логики
Шрифт:
взять величину с той степенью точности, которая нам нужна, и что отброшенные величины относительно незначительны, что вообще результат есть лишь приближение; и он здесь также удовлетворился этим основанием, подобно тому, как он в своем методе решения уравнений высших степеней путем приближения отбрасывает высшие степени·, получающиеся при подстановке в данное уравнение каждого найденного еще неточного значения, на том же грубом основании, что они малы; см. Lagrange, Equations Numeriques, р. 125.
Ошибка, в которую впал Ньютон, разрешая задачу путем отбрасывания существенных высших степеней, ошибка, которая дала повод противникам торжествовать победу своего метода над его методом и истинный источник которой обнаружил Лаграпж в своем новейшем ее рассмотрении {Theorie des fonct. analyt., 3-me р., eh. IV»), доказывает, что употребление этого орудия еще страдало формализмом и неуверенностью. Лагранж показывает, что Ньютон впал в свою ошибку вследствие того, что он пренебрегал членом ряда, содержащим ту степень, которая была важна для данной задачи. Ньютон придерживался формального, поверхностного принципа отбрасывания членов ввиду их относительной малости. — А именно, известно, чго в механике членам ряда, в который разлагается функция какого-нибудь движения, придается определенное значение, так что первый член или первая функция относится
Благодаря этому отбрасывание остальных членов, принадлежащих дурно бесконечному ряду, имеет смысл, совершенно отличный от отбрасывания их на основании их относительной малости*. Разрешение проблемы, данное Ньютоном, * Обе точки зрения весьма просто сопоставлены у Лагранжа при применении теории функций в механике, в главе о прямолинейном движении (Theorie des fonct. З-me р., eh. I, art. IV). Если рассматривать пройденное пространство как функцию протекшего времени, то получается урав-
{302}
оказалось ошибочным не потому, что в нем не принимаются во внимание члены ряда лишь как части некоторой суммы, а потому, что не принимается во внимание член, содержащий то качественное определение, в котором было все дело.
В этом примере качественный смысл есть то, от чего ставится в зависимость прием. В связи с этим мы можем тотчас же выставить общее утверждение, что все затруднение касательно самого принципа было бы устранено, если бы вместо формализма, состоящего в том, что определение диференциала усматривают лишь в дающей ему это имя нение? = ft, которое, разложенное как / ({-f *>)> дает /{ + bft +? f" t + и т. д. Следовательно, пространство, пройденное в данное время, изобра-?2?3 жается формулой = df't + "уРЧ + gTg *"'* +и т· д· Движение, посредством которого проходится это пространство, говорят нам, составлено, следовательно (т. е. вследствие того, что аналитическое разложение в ряд дает много и притом бесконечно много членов) — из различных частичных движений, соответствующие времени пространства которых суть Ь2?8? /''»?*??» 2^3 f'"^ и т* д* ^еРвое частичное движение есть в известном нам движении формально-равномерное движение со скоростью f't, второе равномерно ускоренное, зависящее от силы ускорения, пропорциональной f't. «А так как прочие члены не относятся ни к какому простому известному движению, то нет надобности принимать их в отдельности во внимание, и мы покажем, что от них можно абстрагироваться при определении движения в начале момента времени». Это и показывается, но, конечно, только путем сравнения вышеуказанного ряда, члены которого все должны были служить для определения величины пространства, пройденного в данное время, с данным в § 3 для падения тел уравнением х = а\ — f №, в котором имеются только эти два члена. Но это уравнение само получило этот вид лишь благодаря предположению объяснения, даваемого членам, возникающим посредством аналитического разложения в ряд, это предположение заключается в том, что равномерно ускоренное движение составлено из формально равномерного движения, совершающегося с достигнутой в предыдущую часть времени скоростью, и некоторого прибавка (а в уравнении s=at2), т. е.
эмпирического коэфициента, приписываемого силе тяжести, а ведь это есть такое различение, которое отнюдь не имеет существования или основания в природе вещей, но есть лишь ошибочно получившее характер физического положения выражение того, что получается при принятии некоторой определенной аналитической трактовки.
{303}
задаче, т. е. в различии вообще некоторой функции от ее изменения после того, как ее переменная величина получила некоторое приращение, — если бы вместо этого формализма было указано качественное значение принципа и действие было бы поставлено в зависимость от этого качественного значений. В этом смысле диференциал от х* оказывается вполне исчерпанным первым членом ряда, получающегося путем разложения выражения (x-j-dx)a. Что прочие члены не принимаются во внимание, проистекает, таким образом, не ив их относительной малости; здесь не предполагается никакой такой неточности, погрешности или ошибки, которая бы выравнивалась и исправлялась другой ошибкой, — взгляд, исходя преимущественно из которого, Карно оправдывает обычный метод исчисления бесконечно-малых. Так как дело идет не о некоторой сумме, а о некотором отношении, то диференциал оказывается вполне найденным посредством первого члена; там же, где есть нужда в дальнейших членах, в диференциалах высших порядков, их нахождение состоит не в продолжении ряда, как суммы, а в повторении одного и того же отношения, которое единственно имеют в виду и которое, стало быть, завершено уже в первом члене. Потребность в форме некоторого ряда, в суммировании этого ряда и все, что связано с этим, должны в таком случае быть совершенно отделены от указанного интереса к отношению.
Разъяснения, даваемые Карно относительно метода бесконечных величин, представляют собою наиболее очищенное и ясное изложение того, что нам встретилось в вышеуказанных представлениях. Но при переходе к самим действиям у него более или менее появляются обычные представления о бесконечной малости отбрасываемых членов по сравнению с другими. Он оправдывает метод скорее тем, что результаты оказываются правильными, и полезностью введения неполных уравнений, как он их называет (т. е.
таких уравнений, в которых совершается такое арифметически неправильное отбрасывание), для упрощения и сокращения исчисления, — чем самой природой вещи.
{304}
Лагранж, как известно, снова возвратился к первоначальному методу Ньютона, к методу рядов, дабы быть свободным от трудностей, которые влечет за собою представление о бесконечно-малом, равно как и метод первых и последних отношений и пределов. Относительно его исчисления функций, прочие преимущества которого в отношении точности, абстрактности и всеобщности достаточно невесты, мы должны отметить как касающееся занимающего нас вопроса лишь, то, что оно покоится на той основной теореме, что разность, не превращаясь в нуль, может быть принята столь малой, чтобы каждый член ряда превосходил по своей величине сумму всех следующих за ним членов. — При этом методе также начинают с категорий приращения и разности (по сравнению с первоначальной функцией) той функции, переменная величина которой получает приращение, что и вызывает появление скучного ряда; равно как в дальнейшем члены ряда, которые должны быть отброшены, принимаются в соображение лишь с той стороны, что они составляют некоторую сумму, и основанием, почему они отбрасываются, полагается относительность их определенного количества. Отбрасывание, следовательно, и здесь не сводится)
Качественный характер вообще, свойственный (как мы здесь доказали, трактуя о той форме величины, о которой идет речь) тому, что при этом называется бесконечно «малым, обнаруживается непосредственнее всего в той категории предела отношения, которая приведена выше и проведение которой в диференциальном исчислении рассматри-
{305}
валось как некоторый особого рода метод. Из соображений в суждении Лагранжа об этом методе, что ему недостает легкости применения и что выражение «предел» не дает определенной идеи, мы остановимся на втором и рассмотрим ближе аналитическое значение этого» метода. В представлении о пределе именно и содержится вышеуказанная истинная категория качественного определения отношения между переменными величинами; ибо те их формы, которые появляются в нем, dx и dy, должны быть взяты здесь просто лишь как моменты выражения?^ и само? — должно рассматриваться как единый неделимый знак. Что при этом для механизма исчисления, особенно в его приложении, утрачивается преимущество, которое он извлекает го того обстоятельства, что члены диференциального коэфициента отделяются друг от друга, — это следует здесь оставить в стороне. Этот предел должен быть теперь пределом некоторой данной функции; он должен указать известное значение в связи с нею, определяемое способом вывода. Но с голой категорией предела мы не подвинулись бы дальше, чем с тем, о чем дело шло в этом примечании, имеющем целью показать, что· бесконечно-малое, выступающее в диференциальном исчислении как dx и dy, имеет не только отрицательный, пустой смысл некоторой не-конечной, не-данной величины, как это имеет место, например, в тех случаях, когда говорится: «бесконечное множество», «и т. д. до бесконечности» и т. п., а определенный смысл качественной определенности количественного, момента отношения как такового. Однако эта категория, взятая в таком смысле, еще не имеет отношения к тому, что есть некоторая данная функция, еще не влияет сама по себе на трактовку этой функции и не приводит к такому употреблению указанного определения, которое должно было бы иметь место в последней; таким образом, и представление предела, если этому представлению не дозволяют итти дальше такой доказанной относительно него определенности, также ни к чему не привело бы. Но выражение «предел» уже само по себе подразумевает, что он есть предел чего-то, 20 Гегель, том У, Наука логики
{306}
т. е. выражает известное значение, определяемое функцией переменной величины; и мы должны посмотреть, каков характер этого конкретного оперирования им.
Он должен быть пределом отношения друг к другу тех двух приращений, на которые по сделанному допущению увеличиваются две переменные величины, соединенные в одном уравнении, из коих одна рассматривается как функция другой; приращение берется здесь вообще неопределенным, и постольку о бесконечно-малом нет еще и речи. Но прежде всего путь, которым отыскивается этот предел, приводит к тем же непоследовательностям, которые имеются в других методах. Этот путь именно таков. Если y = fx, то при переходе у в y-\-k fx должна переходить в fx — \- ph — f- qh2 — \- r№ и т. д. Следовательно, k = = ph-\-qh2 и т. д., и — ^ =p-\-qh-{- rh2 и т. д. Если теперь k и h исчезадют, то исчезает и второй член ряда кроме /? каковое? и оказывается пределом отношения этих двух приращений. Отсюда видно, что h как определенное коли- чество полагается = 0, но что вследствие этого — ^ еще не обращается вместе с тем в — j, а остается некоторым отношением. И вот представление предела должно доставить ту выгоду, что оно устранит заключающуюся в этом непоследовательность;? должно вместо с тем быть не действительным отношением, которое было бы= — ^, а лишь тем определенным значением, к которому отношение может приближаться бесконечно, т. е. так, чтобы разность могла стать меньше всякой данной разности. Более определенный смысл приближения касательно того, что собственно должно сближаться между собою, будет рассмотрен ниже. — Но что количественное различие, определяемое не только как могущее, но и как долженствующее быть менее всякой данной величины, уже больше не есть количественное различие, это само собою ясно; это так же очевидно, как только что-нибудь может быть очевидным в математике; но этим мы не пошли дальше? — =-» — Напротив,
{307}
если· ^ = Р, т. е. принимается за некоторое определенное количественное отношение, как это и есть на самом деле, то, наоборот, получается затруднение для предположения,
что h = о, предположения, единственно путем которого и по- k k лучается — ^ — р- Если же согласиться, что ^=0 —и в самом деле, раз й = 0, то само собою k также делается =0, ибо приращение k к у имеет место лишь при условии существования приращения? — то надо было бы спросить, что представляет собою /? которое есть некоторое совершенно определенное количественное значение. На этот вопрос сразу же получается простой, сухой ответ, гласящий, что оно есть коэфициент, и нам указывают, путем какого вывода он возникает, — известным определенным образом выведенная первая производная функция некоторой первоначальной функции. Если удовольствоваться этим ответом, как и в самом деле Лагранж по существу дела удовольствовался им, то общая теория науки диференциального исчисления и непосредственно сама та одна форма, которая называется теорией пределов, освободилась бы от приращений, а затем и от их бесконечной или какой угодно малости, от трудности, состоящей в том, что кроме первого члена или, вернее, лишь коэфициента первого члена, все остальные члены ряда, которые неминуемо появляются благодаря введению этих приращений, снова устраняются; да помимо этого она очистилась бы также и от всего связанного с этим дальнейшего, от формальных категорий прежде всего бесконечного, бесконечного приближения, а затем и от дальнейших здесь столь же пустых категорий непрерывной величины* и всех еще других, которые считается нужным * Категория непрерывной или текучей величины появляется вместе с рассмотрением внешнего и эмпирического изменения величин, приведенных некоторым уравнением в такую связь, что одна есть функция другой; но так как научным предметом диференциального исчисления служит известное (обыкновенно выражаемое через диференциальный коэфи- циент) отношение, каковая определенность может быть названа также и законом, то для этой специфической определенности простая непрерывность есть отчасти чужеродный аспект, отчасти же во всяком случае абстрактная, а здесь— пустая категория, так как ею ничего не выражается 20*