Чтение онлайн

на главную

Жанры

(Не)совершенная случайность. Как случай управляет нашей жизнью
Шрифт:

Сегодня колоколообразную кривую называют обычно нормальным распределением, а иногда — Гауссовой кривой (вскоре читатель узнает, откуда взялось это название). Нормальное распределение — не отдельная фиксированная кривая, но целое семейство кривых, определяемых двумя параметрами, задающими положение кривой и ее форму. Первый из них — расположение пика: в графиках выше это 5, 50 и 500 соответственно. Второй — степень разброса. Этот показатель, получивший свое современное наименование лишь в 1894 г., называется стандартным отклонением и представляет собой теоретический аналог понятия, о котором я уже упоминал — выборочного стандартного отклонения. Грубо говоря, это половина ширины кривой в той точке, где кривая достигает своей 60%-ной высоты. В наше время значение нормального распределения выходит далеко за пределы аппроксимации чисел в треугольнике Паскаля. Это самая распространенная форма распределения любого рода данных.

При описании распределения данных колоколообразная кривая демонстрирует, что в том случае, когда вы делаете много замеров, большинство их результатов будут примыкать к среднему значению, что отображается в виде пика. Симметрично снижаясь по обе стороны от пика, кривая показывает, как убывает число результатов замеров

ниже и выше среднего, поначалу довольно резко, а потом не столь круто. Если данные распределены нормально, около 68% (т. е. приблизительно 2/3) результатов измерений попадают в пределы одного стандартного отклонения, около 95% — в пределы двух стандартных отклонений и 99,7% — в пределы трех стандартных отклонений.

Чтобы представить себе эту картину, взгляните на графики ниже. Квадратики соответствуют результатам угадывания 300 студентами исходов десятикратного подбрасывания монеты{144}. По оси абсцисс отложено количество верных угадываний — от 0 до 10. По оси ординат — количество студентов, продемонстрировавших соответствующее количество верных угадываний. Кривая имеет колоколообразную форму с пиком на уровне 5 верных угадываний: столько раз верно угадали исход подбрасывания 75 студентов. Двух третей максимальной высоты (соответствующее количество студентов — 51) кривая достигает посередине между 3 и 4 верными угадываниями слева и между 6 и 7 верными угадываниями справа. Колоколообразная кривая с таким стандартным отклонением типична для стохастических процессов вроде угадывания исходов подбрасывания монеты.

Угадывание исходов подбрасывания монет и подбор акций: сопоставительный анализ.

Кружочками на том же графике отображен еще один набор данных — успешность работы 300 менеджеров паевых инвестиционных фондов. Для этого набора данных по оси абсцисс отложено не количество верных угадываний исходов подбрасывания монеты, а количество лет (из 10), когда показатели успешности работы менеджера были выше группового среднего. Обратите внимание на сходство! Мы еще вернемся к нему в главе 9.

Чтобы понять связь между нормальным распределением и случайной ошибкой, можно рассмотреть процесс проведения выборочного опроса. Вспомним опрос относительно популярности мэра Базеля, который я упоминал в главе 5. В этом городе часть жителей одобряет деятельность мэра, а часть осуждает. Для простоты примем, что тех и других по 50%. Но, как мы видели, результаты опроса не обязательно будут полностью соответствовать этой пропорции 50/50. И в самом деле, если выборочно опросить N горожан, то вероятность, что любое произвольное их число поддержит мэра, пропорциональна числам в строке N треугольника Паскаля. А раз так, то, согласно работам де Муавра, если служба общественного мнения опросит большое число горожан, вероятность всех возможных результатов опроса можно будет описать с помощью кривой нормального распределения. Иными словами, около 95% случаев одобрения попадет в пределы 2 стандартных отклонений от истинного рейтинга мэра, 50%. Для описания этой погрешности службы общественного мнения используют понятие «допустимый предел погрешности». Сообщая средствам массовой информации, что предел погрешности опроса составляет ±5%, они имеют в виду, что если повторить опрос много раз подряд, 19 из 20 раз (т. е. в 95% случаев) результат его будет в пределах 5% от истинного значения измеряемой переменной. (И хотя службы общественного мнения редко на это указывают, в 1 случае из 20 результат опроса будет мало соответствовать действительности.) На практике размеру выборки в 100 человек соответствует такой допустимый предел погрешности, который никуда не годится. А вот для выборки в 1000 человек предел погрешности обычно составляет около 3%, что уже вполне пригодно для большинства целей.

Однако, проводя опрос любого рода, важно сознавать, что при любом повторении опроса результат хоть немного, но изменится. Например, если в действительности 40% зарегистрированных избирателей дают положительную оценку деятельности президента, шесть независимых опросов скорее покажут что-то вроде 37%, 39%, 39%, 40%, 42% и 42%, нежели сойдутся на показателе в 40%. (Эти шесть чисел — действительные результаты шести независимых опросов, призванных выявить количество граждан, которые положительно оценивали деятельность президента в первые две недели сентября 2006 года{145}.) Вот почему на практике на изменчивость данных в рамках допустимого предела погрешности не следует обращать внимания. Но даже если «Нью-Йорк Таймс» никогда и не вынесет на первую страницу заголовок «Количество рабочих мест и уровень заработной платы к двум часам пополудни несколько выросли», в публикациях, посвященных политическим опросам, подобного рода заголовки — не редкость. Например, после Национального партийного съезда республиканцев в 2004 г. «Си-эн-эн» разродилась выпуском новостей, озаглавленным так: «Похоже, рейтинг Буша несколько вырос»{146}. Эксперты «Си-эн-эн» пояснили, что «в результате проведения съезда рейтинг Буша увеличился на 2%… Если до съезда в его пользу склонялись 50% потенциальных избирателей, то сразу после съезда — 52%». Лишь позднее репортер оговорил, что предел погрешности для данного опроса составлял 3,5%, а это означает, что экстренный выпуск новостей по сути не имел смысла. Похоже, слово «похоже» на самом деле означало «непохоже».

Как правило, при проведении опросов предел погрешности выше 5% считается недопустимым, однако в повседневной жизни мы основываем свои суждения на значительно меньшем количестве наблюдений. Разве найдешь человека, который 100 лет играет в профессиональный баскетбол, вложил деньги в 100 многоквартирных жилых домов или основал 100 компаний, выпускающих шоколадное печенье? Так что, когда мы делаем выводы об успешности этих людей, мы берем за основу лишь незначительное число наблюдений. Следует ли футбольной команде раскошелиться на 50 млн долларов, чтобы заполучить игрока, чья игра была поистине чемпионской лишь в течение года? С какой вероятностью биржевой маклер, который в очередной раз просит у вас денег и говорит,

что дело верное, вновь добьется успеха? Означает ли успех процветающего изобретателя такой игрушки, как морские обезьяны, что его новые изобретения — невидимые золотые рыбки и растворимые лягушки — скорее всего, станут пользоваться таким же спросом? (Кстати сказать, не стали{147}.) Сталкиваясь с успехом или с неудачей, мы имеем дело лишь с одним наблюдением, с одной из множества точек колоколообразной кривой, отображающей все наблюдавшиеся ранее возможности. И мы не знаем, что представляет собой это наблюдение — среднее или явный выброс, событие, в котором можно быть абсолютно уверенным, или редкий случай, который едва ли повторится. Так или иначе, мы должны иметь в виду, что точечное наблюдение — это не более чем точечное наблюдение, и прежде чем принимать его как факт, следует рассмотреть его в контексте соответствующего ему стандартного отклонения или разброса значений. Даже если некоторое вино получило оценку в 91 балл, эта оценка не имеет смысла, пока мы не узнаем, каков был бы разброс, если бы то же самое вино подверглось повторному оцениванию или если бы его стали оценивать другие люди. В качестве примера полезно вспомнить, как несколько лет назад «Путеводитель по хорошим австралийским винам» издательства «Penguin» и «Ежегодник австралийских вин», выпускаемый «On Wine», написали о рислинге «Митчелтон Блэквуд Парк» урожая 1999 г., причем «Путеводитель…» присвоил вину пять звездочек из пяти и назвал лучшим вином года по версии «Penguin», а «Ежегодник…» оценил ниже всех прочих вин, о которых писал в тот год, и счел худшим вином данной марки за последнее десятилетие{148}. Нормальное распределение не только помогает понять подобные разногласия, но и применяется в великом множестве областей науки и торговли: например, когда фармацевтическая компания решает, считать ли результаты клинических испытаний значимыми, производитель — отражает ли случайная выборка реальный процент деталей с браком, а закупщик — принять ли к действию результаты опроса.

Тот факт, что нормальное распределение описывает распределение ошибки измерения, открыл десятилетия спустя после выхода работы де Муавра человек, имя которого носит колоколообразная кривая, — немецкий математик Карл Фридрих Гаусс. Эта мысль — во всяком случае, в отношении астрономических измерений, — пришла Гауссу в голову, когда он работал над проблемой траекторий движения планет. Однако же «доказательство» Гаусса было, по его собственному позднейшему признанию, ошибочным{149}, а далеко идущие последствия этого открытия тоже не пришли ему на ум. Поэтому он, дабы не привлекать излишнего внимания, сунул обнаруженный закон в один из последних параграфов своей книги «Теория движения небесных тел, обращающихся вокруг Солнца по коническим сечениям». Там бы она и сгинула, эта еще одна из многочисленных отвергнутых наукой идей о том, как должен выглядеть закон распределения ошибок.

Однако нормальное распределение вернул из небытия Лаплас, наткнувшийся на работу Гаусса в 1810 г., вскоре после того, как подал в Академию наук статью с доказательством так называемой центральной предельной теоремы, гласящей, что сумма большого количества независимых случайных величин имеет распределение, близкое к нормальному. Например, предположим, что вы выпекаете 100 буханок хлеба, каждый раз основываясь на рецепте, по которому должны получаться буханки весом в 1000 граммов. Но иногда вы случайно добавляете то чуть меньше, то чуть больше муки или молока, а иногда чуть меньше или чуть больше жидкости испаряется за время нахождения буханки в печи. В конечном счете в силу каждой из множества возможных причин вес буханки может вырасти или уменьшиться на несколько граммов, и в этом случае центральная предельная теорема утверждает, что итоговый вес буханок будет варьировать в соответствии с законом нормального распределения. Читая работу Гаусса, Лаплас сразу же понял, что может использовать его открытие в целях совершенствования собственной работы, а его собственная работа, в свою очередь, намного убедительнее, чем это удалось Гауссу, доказывает: нормальное распределение является отражением закона распределения ошибок. Лаплас немедленно опубликовал краткое продолжение статьи, посвященной центральной предельной теореме. В наши дни эта теорема и закон больших чисел — две наиболее важных наработки в рамках теории случайности.

Чтобы пояснить, каким образом центральная предельная теорема доказывает, что нормальное распределение адекватно отражает закон случайного распределения ошибки, вернемся к примеру Даниила Бернулли с лучником. Мне однажды довелось выступить в роли лучника во время вечера в приятном обществе с крепкими напитками и беседами не для детского уха: ко мне прибежал мой младший сын Николай, протянул мне лук и стрелу и начал упрашивать, чтобы я метким выстрелом сбил у него с головы яблоко. И хотя стрела была с мягким наконечником из губки, мне показалось разумным проанализировать свои возможные ошибки и оценить их вероятность. Естественно, больше всего меня беспокоили смещения по вертикали. Простая модель таких ошибок выглядит следующим образом: каждый случайный фактор (скажем, ошибка прицеливания, влияние воздушных потоков и т. п.) может с равной вероятностью сместить мой выстрел по вертикали либо вверх, либо вниз относительно мишени. Итоговая ошибка будет равна сумме всех этих ошибок. Если мне повезет, примерно половина из них сместит выстрел вверх, другая половина — вниз, и тогда я попаду точно в цель. А если мне (точнее, моему сыну) не повезет, то все ошибки подействуют в одном направлении, и в цель я не попаду, а попаду либо существенно ниже, либо существенно выше. Соответственно, мне хотелось знать, какова вероятность того, что ошибки нивелируют друг друга, или, напротив, их сумма достигнет максимального значения, или примет одно из промежуточных значений. Но это был в точности процесс Бернулли, как если бы я подбрасывал монеты и задавался при этом вопросом, с какой вероятностью у меня выпадет определенное число орлов. Ответ на этот вопрос дает треугольник Паскаля или, если попыток много, нормальное распределение. И ровно этому же посвящена центральная предельная теорема. (Кстати сказать, в итоге я не попал ни в яблоко, ни в сына, но зато сбил бокал превосходного каберне.)

Поделиться:
Популярные книги

Я не князь. Книга XIII

Дрейк Сириус
13. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я не князь. Книга XIII

Последний попаданец 11. Финал. Часть 1

Зубов Константин
11. Последний попаданец
Фантастика:
фэнтези
юмористическое фэнтези
рпг
5.00
рейтинг книги
Последний попаданец 11. Финал. Часть 1

Покоритель Звездных врат

Карелин Сергей Витальевич
1. Повелитель звездных врат
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Покоритель Звездных врат

Совок-8

Агарев Вадим
8. Совок
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Совок-8

Столичный доктор. Том III

Вязовский Алексей
3. Столичный доктор
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Столичный доктор. Том III

Король Масок. Том 1

Романовский Борис Владимирович
1. Апофеоз Короля
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Король Масок. Том 1

Ищу жену для своего мужа

Кат Зозо
Любовные романы:
любовно-фантастические романы
6.17
рейтинг книги
Ищу жену для своего мужа

Мастер Разума III

Кронос Александр
3. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.25
рейтинг книги
Мастер Разума III

Темный Охотник 2

Розальев Андрей
2. Темный охотник
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Темный Охотник 2

Идеальный мир для Лекаря 20

Сапфир Олег
20. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 20

Обыкновенные ведьмы средней полосы

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Обыкновенные ведьмы средней полосы

Возвышение Меркурия. Книга 16

Кронос Александр
16. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 16

Адепт. Том 1. Обучение

Бубела Олег Николаевич
6. Совсем не герой
Фантастика:
фэнтези
9.27
рейтинг книги
Адепт. Том 1. Обучение

Идущий в тени 4

Амврелий Марк
4. Идущий в тени
Фантастика:
боевая фантастика
6.58
рейтинг книги
Идущий в тени 4