Несостоявшаяся информационная революция. Условия и тенденции развития в СССР электронной промышленности и средств массовой коммуникации. Часть I. 1940–1960 годы
Шрифт:
Первым, кто продемонстрировал возможности радиовещания, был канадский ученый Реджинальд Фессенден (Reginald Fessenden). В 1906 г., накануне Рождества, он стал автором, звукорежиссером и исполнителем первой в мире «радиопередачи» – радисты на кораблях Северной Атлантики могли явственно слышать через головные телефоны, как изобретатель играет на скрипке и зачитывает отрывки из Библии. Непризнанным соавтором этого технического достижения являлся американский инженер шведского происхождения Эрнст Александерсон, который разработал для Фессендена «машинный передатчик», работавший со скоростью 100 000 оборотов в минуту.
В 1907 г.
Превращение радиотелеграфа в средство глобальной электросвязи, соединяющее страны и континенты, и первые опыты радиовещания послужили исходным пунктом развития радиотехники, а затем и электроники, грандиозные успехи которой мы видим теперь повсюду.
Начало развитию электроники (термин в 1904 г. ввел немецкий ученый Артур Рудольф Венельт) положило изобретение электронных приборов для усиления и генерирования слабых токов и высокочастотных колебаний: двухэлектродной лампы-диода (англичанин Джон Флеминг, 1904 г.) и трехэлектродной лампы-триода (американец французского происхождения Ли де Форест, 1906 г.). Данным изобретениям предшествовало открытие в 1875 г. Томасом Эдисоном эффекта «термоионной эмиссии» – почернения внутренней поверхности герметичной стеклянной колбы лампы накаливания в результате, как тогда считали, испускания электрически заряженных частиц-ионов (от греч. «ион» – путешествующий) сильно нагретыми твердыми телами. Факт существования электрона и термоэлектронной эмиссии бесспорным стал лишь в 1911 г.
Диод Флеминга (прибор также носит названия: «лампа с термокатодом», «вакуумный диод», «кенотрон», «термоионная лампа», «вентиль Флеминга») представлял собой герметичный стеклянный баллон с впаянной в него угольной нитью накаливания, окруженной металлическим цилиндром. Цилиндр был назван анодом (от греч. «анодос» – путь вверх), нить накала – катодом (от греч. «катодос» – спуск). В начале XX века полагали, что электрический ток течет от положительного полюса к отрицательному, подобно тому, как стекает, сверху вниз, вода. Сегодня мы знаем, что, на самом деле, происходит обратное: под действием электромагнитных сил электроны «путешествуют» от отрицательного полюса к положительному.
В триоде Фореста (прибор также носит название «аудион» и «лампа де Фореста») между угольной нитью накала и анодом располагалась проволочная решетка («управляющая сетка»), позволявшая не только детектировать, но и усиливать принятые радиосигналы. Однако, Флеминг и де Форест неправильно понимали принципы работы своих приборов, объясняя их выпрямительные (диод) и усилительные (триод) свойства ионизацией разреженного газа. И даже предупреждали, что из баллона электронной лампы никоим образом нельзя откачивать газ, создавая в ней вакуум.
Де Форест сумел заинтересовать своим изобретением American Telephone and Telegraph Corporation (AT&T), и в 1913 г. продал ей за 50 тыс. долларов право на использование аудионных усилителей для телефонной связи. Де Форест, помимо прочего, считается
В 1906 г. немецкий инженер и предприниматель Роберт фон Либен сконструировал триод с управляющей сеткой в виде перфорированного листа алюминия (в патенте изобретателя прибор назывался «катодно-лучевое реле»). Сетка помещалась в центре баллона, деля его на две части: в нижней части – нить накала (катод), в верхней части – анод. В целях увеличения эмиссионных свойств радиолампы фон Либен предложил покрывать нить накала тонким слоем окисла кальция или бария и заполнять баллон парами ртути.
Патенты фон Либена приобрели все ведущие немецкие производители телефонно-телеграфного оборудования: Siemens & Halske, AEG, Telefunken, Felten & Guillaume. В 1913 г. инженер компании Telefunken Александр Мейсснер использовал лампу фон Либена для генерирования радиосигналов, и построил на ее основе первый в мире ламповый радиопередатчик, способный передавать как телефонные, так и телеграфные сигналы. Ламповый генератор Мейсснера содержал ламповый триод и колебательный контур, состоящий из катушки индуктивности и конденсатора.
Преимуществом ламповых радиостанций и приемников по отношению к другим радиоустройствам являлась более высокая стабильность генерации и приема сигнала. Они были просты в изготовлении и эксплуатации, имели небольшой вес, легко перестраивались с волны на волну и обеспечивали высококачественную передачу речи и музыки, а в дальнейшем изображения. Электронная лампа становится материальной основой или элементной базой первой «электронной революции».
Конструкцию триода в 1915 г. усовершенствовал сотрудник исследовательской лаборатории компании Siemens and Halske Вальтер Шоттки. Он обнаружил зависимость термоэлектронной эмиссии от внешнего электрического поля и предложил для ослабления этого эффекта устанавливать вблизи катода экранную сетку. Запатентованная им в 1915 г. радиолампа была названа «тетродом», по числу электродов («тетра» по-гречески «четыре»). Научные открытия Шоттки в области физики твердого тела и электроники привели к изобретению множества устройств, носящих в настоящее время его имя.
Первые радиолампы имели слабый коэффициент усиления. Радиосигналы в эфире часто перекрывались один другим и мешали друг другу. Необходимы были дополнительные изыскания, чтобы превратить триод в настоящий усилитель. Этим новым устройством стала регенеративная схема (англ. pulse regenerating circuit), запатентованная в 1914-1916 гг. Ли де Форестом и Эдвином Армстронгом (Edwin Armstrong). Принцип изобретения состоял в том, что сигнал, полученный с выхода приемно-усилительной лампы, подавался обратно на вход. Затем в радиоприемниках появились усилители высокой и низкой частоты.