Невероятно – не факт
Шрифт:
Ещё примеры.
В ящике, куда заглянуть нельзя, находится сто шаров, четыре из которых чёрные. Чему равна вероятность вытащить чёрный шар? Рассматривается группа из ста событий; благоприятных событий четыре, значит, вероятность вытянуть чёрный шар равна 0,04. Вероятность вытянуть туза пик из полной колоды равна 1/52. Вероятность вытянуть любую пику – 1/4, какой-либо туз – 1/13, а любую пиковую фигуру – 3/13 и так далее.
Мы рассмотрели примеры, когда сразу ясно, о какой группе событий идёт речь, когда вполне очевидно, что все события из-за равенства условий имеют одинаковые шансы осуществиться, когда заранее ясно, чему равняется вероятность интересующего нас события. Но
Первое – вероятность исхода события не очевидна заранее. И тогда значение вероятности может быть установлено лишь на опыте. К этому, так называемому статистическому, методу определения вероятности мы будем возвращаться неоднократно и тогда подробнее о нём поговорим.
Другая трудность, скорее логического порядка, появляется тогда, когда нет однозначности в выделении группы явлений, к которой относится интересующее нас событие.
Скажем, некто Пьер отправился на мотоцикле на работу на улицу Гренель и по дороге наскочил на грузовик. Можно ли ответить, какова вероятность этого грустного происшествия? Без сомнения, можно, но необходимо оговорить исходную ситуацию. А выбор её, конечно, неоднозначен. Ведь можно привлечь к статистике лишь выезды на работу молодых парижан; а можно исследовать группу выездов всех парижан в любое время; можно расширить статистику на другие города, а не ограничиться Парижем. Во всех этих вариантах вероятности будут разными.
Итак, вывод один: когда начинаешь оперировать числами, необходима точность в постановке задачи; исследователь всегда должен формализовать явление – с этим уж ничего не поделаешь.
Вернёмся теперь к игре в кости. Одной костью никто не играет: слишком просто и загодя известно, что вероятность выпадения любой грани – 1/6, и никаких математических задач в такой игре не возникает.
При бросании трех или даже двух костей сразу появляются проблемы, и можно уже задать, скажем, такой вопрос: какова вероятность появления двух шестёрок? Каждая из них появляется независимо с вероятностью, равной 1/6. При выпадении шестёрки на одной кости вторая может лечь шестью способами. Значит, вероятность выпадения двух шестёрок одновременно будет равна произведению двух вероятностей (1/6·1/6). Это пример так называемой теории умножения вероятностей. Но на этом новые проблемы не кончаются.
В начале XVII века к великому Галилею явился приятель, который захотел получить разъяснение по следующему поводу. Играя в три кости, он заметил, что число 10, как сумма очков на трех костях, появляется чаще, чем число 9. «Как же так, – спрашивал игрок, – ведь как в случае девятки, так и в случае десятки эти числа набираются одинаковым числом способов, а именно шестью?» Приятель был совершенно прав. Посмотрите на рисунок, на котором показано, как можно представить девятку и десятку в виде сумм.
Разбираясь в этом противоречии, Галилей решил одну из первых задач так называемой комбинаторики – основного инструмента расчётов вероятностей.
Итак, в чём же дело? А вот в чём.
Важно не то, как сумма разлагается на слагаемые, а сколько вариантов выпадения костей приводят к суммам в «девять» и «десять» очков. Галилей нашёл, что «десять» осуществляется 27 способами, а «девять» – 25. Эмпирическое наблюдение получило теоретическое истолкование. Что же это за разница между числом представлений суммы через слагаемые и числом вариантов выпада костей?
Вот на какую тонкость необходимо обратить внимание. Рассмотрим сначала случай, когда на трех костях три разные цифры, скажем 1, 2, и 6. Этот результат может осуществляться шестью вариантами: единица на первой кости, двойка на второй и шестёрка на третьей; единица на первой, шестёрка на второй, двойка на третьей; также возможны два случая, когда двойка окажется на первой кости и ещё два – когда на первой кости выпадет шестёрка (этот вариант приведён в таблице).
Иначе обстоит дело, когда сумма представлена таким образом, что два слагаемых одинаковые, например, 1 + 4 + 4. Только один вариант такого разложения появится, если на первой кости покажется единица, а на двух других четвёрки, ибо перестановка цифры на второй и третьей костях не даёт нового варианта. Второй вариант возникает, когда единичка покажется на второй кости, а третий, если она появится на третьей кости. Итого три возможности.
Наконец, ясно, что если сумма разложена на 3 + 3 + 3, то на костях такое событие осуществляется единственным способом.
В нашей таблице это число вариантов указано в скобках рядом с представлением суммы. Складывая числа в скобках, мы получим 25 и 27, которые нашёл Галилей. Вероятности появления на двух костях сумм 9 и 10 относятся как 25 к 27.
Это с виду простое объяснение не лежало на поверхности. Достаточно сказать, что Лейбниц полагал одинаковыми вероятности появления на двух костях как 11 очков, так и 12. После работы Галилея ошибочность такого заключения стала очевидной: 12 осуществляется единственным способом: двумя шестёрками, а 11 появляется в двух случаях, когда шестёрка на первой кости, а пятёрка – на второй, и наоборот.
При бросании двух костей чаще всего появляется сумма, равная 7. Имеется шесть возможностей набора этой суммы. Суммы 8 и 6 осуществляются уже пятью комбинациями каждая. Проверьте, если хотите, сами наше заключение.
Что наша жизнь – игра
«Чекалинский стал метать, руки его тряслись. Направо легла дама, налево туз.
– Туз выиграл! – сказал Герман и открыл свою карту.
– Дама ваша убита, – сказал ласково Чекалинский.
Герман вздрогнул: в самом деле, вместо туза у него стояла пиковая дама. Он не верил своим глазам, не понимал, как мог он обдёрнуться».
Я не берусь в деталях объяснять читателю, в чём заключалась игра в штосс, столь распространённая в высшем петербургском обществе особенно в первой половине XIX века. Но основная её идея проста. Банкомёт и понтирующий игрок берут по колоде, распечатывают их, игрок выбирает из колоды карту, на которой записывает куш или кладёт на карту деньги. Банкомёт начинает метать, то есть кладёт в открытую карты – направо, налево, направо, налево…
Та карта, что ложится налево, дана, а направо – бита. Легла выбранная вами карта направо – банкомёт забирает деньги, налево – платит вам столько, сколько было поставлено на карту.
В игре есть варианты. Скажем, игроки загибают пароли, или играют мирандолем, или ставят на руте. Не знаете, что это такое? Я тоже. Но главное состоит в том, что штосс – игра с равными шансами для банкомёта и партнёра. Поэтому сильные в художественном отношении сцены, встречающиеся почти у всех русских романистов, где описывается умелая игра одного и беспомощная другого, лишены, так сказать, научного обоснования.
В «Войне и мире» Долохов обыгрывает Ростова вполне планомерно. Долохов решил продолжать игру до тех пор, пока запись за Ростовым не возрастёт до 43 тысяч. Число это было им выбрано потому, что 43 составляло сумму сложенных его годов с годами Сони.