Чтение онлайн

на главную

Жанры

Шрифт:

Читатель верит, что смелый, резкий и решительный Долохов, которому удаётся все, хорошо играет в карты. А мягкий, добрый, неопытный Ростов, кажется, не умеет играть и не может выиграть. Великолепная сцена заставляет нас верить, что результат карточной борьбы предопределён.

Разумеется, это неверно. Сказать про человека, что он хорошо играет в игру, в которой проиграть и выиграть шансы одинаковы, это значит обвинить его в шулерстве.

Не знаю, как другие, но я не могу избавиться от впечатления, что Арбенин в лермонтовском «Маскараде» – вспомните сцену, когда он садится играть за князя, а зрители комментируют: «Зажглось ретивое», – знает недозволенные приёмы, не допускает, чтобы они были

использованы против него и не брезгует применять их сам. Только в этом смысле можно говорить, что игрок хорошо играет в штосс и другие подобные игры.

Герой мог проиграть, а мог с таким же успехом и выиграть. В «честной» игре выигрыши и проигрыши будут чередоваться по закону случая. При долгой игре число удач и неудач будет, конечно, примерно одинаковым точно так же, как и число выпадов монеты орлом или решкой кверху.

Чтобы оценить реалистичность драматических событий, разыгравшихся в тот вечер, предположим, что Ростов всё время ставил на карту одну и ту же сумму, скажем тысячу рублей. Чтобы проиграть сорок тысяч, нужно, чтобы число проигрышей превосходило число выигрышей на сорок.

«Через полтора часа времени большинство игроков уже шутя смотрело на свою собственную игру», – читаем мы в романе.

Таким образом, проигрыш Ростова свершился часа за два-три. Одна талия, то есть одна раскладка карт, длится, конечно, не более чем одну-две минуты. Значит, число игр было никак не меньше двухсот, скажем для определённости, 120 проигрышей и 80 выигрышей. Вероятность того, что из двухсот игр, по крайней мере, 120 будут проиграны, вычисляется по формулам теории: она близка к 0,1. Вы видите, что проигрыш Ростова – явление, не требующее объяснений, выводящих нас за рамки науки. Он мог бы и выиграть, но по замыслу Льва Николаевича ему надо было проиграть.

Есть лишь одно обстоятельство, которое нарушает равенство игроков, сражающихся в такие игры, как игральные кости или штосс, то есть в игры, где игрокам ничего не надо решать, ибо игрой не предусмотрен выбор (за исключением выбора: играть или отказаться): этим обстоятельством является богатство. Нетрудно видеть, что шансы на стороне того игрока, у которого больше денег. Ведь проигрыши и выигрыши чередуются случайно, и в конце концов обязательно встретится то, что называют «полосой везения» или «полосой невезения». Эти полосы могут быть настолько затяжными, что у партнёра победнее будут выкачаны все деньги. Вычислить вероятность проигрыша не представляет труда: надо лишь возводить одну вторую в соответствующую степень. Вероятность проиграть два раза подряд – это одна четверть (1/2), три раза подряд – одна восьмая (1/2)… восемь раз подряд – одна шестьдесят четвёртая (1/2). Если игра повторяется тысячу раз – а это, наверное, вполне возможно, ибо, как пишут в романах, игроки просиживают за картами ночи напролёт, проигрыш 8 раз подряд будет делом обычным. Разумный игрок (да простится мне подобное сочетание слов) должен быть готов к таким «полосам», и они не должны «выбивать» его из игры вследствие опустошения карманов.

В начале XIX века к «чистым» азартным играм, не требующим от игрока даже ничтожных умственных усилий, прибавилась рулетка. На первых порах она не получила распространения, но уже к 1863 году в столице карликового государства Монако – Монте-Карло создаётся грандиозное рулеточное предприятие. Игорный дом в Монте-Карло быстро стал знаменит. Во многих романах и повестях Монте-Карло выбиралось местом действия, а героем – безумец, собирающийся обогатиться за счёт его величества случая или, того хуже, за счёт изобретения беспроигрышной системы.

Произведения

эти вполне реалистичны. Если их дополнить ещё полицейскими протоколами о неудачниках, покончивших с собой из-за крушения надежд стать Крезом за счёт княжества Монакского, то получится увесистый отчёт о пагубном очаровании, которое таит в себе игорный дом.

Наверное, можно было бы не описывать рулеточное колесо и разграфлённое поле, на клетки которого бросают денежные жетоны. И всё же несколько слов для читателей, незнакомых с художественной литературой о Монте-Карло, сказать стоит. Рулетка – это большая тарелка, дно которой может вращаться относительно неподвижных бортов. Дно-колесо разбито на 37 ячеек, пронумерованных от 0 до 36 и покрашенных в два цвета: чёрный и красный. Колесо закручивается, и на него бросается шарик. Он танцует, беспорядочно перепрыгивая из ячейки в ячейку. Темп колеса замедляется, шарик делает последние нерешительные прыжки и останавливается. Выиграло, скажем, число 14 – красный цвет.

Игроки могут ставить на красное или чёрное; на чёт или нечет; первую, вторую или третью дюжину и, наконец, на номер.

За угадывание цвета или чётности вы получаете денег вдвое больше, чем внесли на игру, за выигрыш дюжины – втрое, за выигрыш номера – в тридцать шесть раз. Эти числа строго соответствовали бы вероятностям появления, если бы не одно маленькое «но» – это ноль (зеро). Зеро – выигрыш банкомёта. При нём проигрывают и поставившие на чёрное, и те, кто надеялся на красный цвет.

Ставя на красное, искатель счастья действует с шансом на выигрыш, равным 18/37: чуть-чуть меньше половины. Но за счёт этого «чуть-чуть» существует государство Монако и получают хорошие дивиденды пайщики Монте-Карло. Из-за зеро игра в рулетку уже не равноценна для игрока и банкомёта. Поставив 37 раз по франку, я в среднем выиграю 18 раз, а проиграю 19.

Если я 37 раз ставлю по франку на 14-й (или какой-либо другой) номер, то в среднем я выиграю один раз из тридцати семи, и за этот выигрыш мне уплатят лишь 36 франков. Так что, как ни крути, при длительной игре проигрыш обеспечен.

Значит, нельзя выиграть в рулетку? Да нет. Конечно, можно. И мы легко подсчитаем вероятность выигрыша. Для простоты положим, что игрок пробует своё счастье каждый день. Ровно в 18.00 он появляется в казино и ставит пять раз по франку на красное.

За год игры герой встретится со всеми возможными вариантами красного и чёрного (точнее, не красного, так как и зеро мы отнесём к чёрному). Вот эти варианты:

Как видно, их всего 32 варианта. Один из них содержит пять к, пять – состоят из четырех к, десять – из трех к. Разумеется, те же числа будут и при подсчёте чёрных случаев (ч).

Из составленной таблички мы сейчас увидим все «секреты» рулетной игры. Будем считать, что в году 320 дней рабочих и полтора месяца выходных: работа ведь нелёгкая – сплошная трёпка нервов. Количество дней с разными выигрышами и проигрышами получается от умножения на 10 числа различных комбинаций, приведённых в таблице. Таким образом, счастливых дней в «среднем» году будет десять. Но зато столько же будет «чёрных» дней сплошного проигрыша. На число «хороших» дней, когда фортуна откажет лишь один раз, придётся столько же дней неудачных, когда лишь один раз появится красный цвет, – их будет пятьдесят. Чаще всего – по сто дней – мы встретимся со случаями, когда выигрышей выпадет три, а проигрышей – два, или наоборот, когда проигрышей три, а выигрышей – два.

Поделиться:
Популярные книги

Средневековая история. Тетралогия

Гончарова Галина Дмитриевна
Средневековая история
Фантастика:
фэнтези
попаданцы
9.16
рейтинг книги
Средневековая история. Тетралогия

Хозяйка Междуречья

Алеева Елена
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Хозяйка Междуречья

Назад в СССР 5

Дамиров Рафаэль
5. Курсант
Фантастика:
попаданцы
альтернативная история
6.64
рейтинг книги
Назад в СССР 5

Столичный доктор. Том II

Вязовский Алексей
2. Столичный доктор
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Столичный доктор. Том II

Игрок, забравшийся на вершину. Том 8

Михалек Дмитрий Владимирович
8. Игрок, забравшийся на вершину
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Игрок, забравшийся на вершину. Том 8

Довлатов. Сонный лекарь

Голд Джон
1. Не вывожу
Фантастика:
альтернативная история
аниме
5.00
рейтинг книги
Довлатов. Сонный лекарь

Идеальный мир для Лекаря 9

Сапфир Олег
9. Лекарь
Фантастика:
боевая фантастика
юмористическое фэнтези
6.00
рейтинг книги
Идеальный мир для Лекаря 9

Система Возвышения. Второй Том. Часть 1

Раздоров Николай
2. Система Возвышения
Фантастика:
фэнтези
7.92
рейтинг книги
Система Возвышения. Второй Том. Часть 1

Чужое наследие

Кораблев Родион
3. Другая сторона
Фантастика:
боевая фантастика
8.47
рейтинг книги
Чужое наследие

Князь Мещерский

Дроздов Анатолий Федорович
3. Зауряд-врач
Фантастика:
альтернативная история
8.35
рейтинг книги
Князь Мещерский

Совок 2

Агарев Вадим
2. Совок
Фантастика:
альтернативная история
7.61
рейтинг книги
Совок 2

Царь поневоле. Том 2

Распопов Дмитрий Викторович
5. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Царь поневоле. Том 2

Система Возвышения. (цикл 1-8) - Николай Раздоров

Раздоров Николай
Система Возвышения
Фантастика:
боевая фантастика
4.65
рейтинг книги
Система Возвышения. (цикл 1-8) - Николай Раздоров

Системный Нуб

Тактарин Ринат
1. Ловец душ
Фантастика:
боевая фантастика
рпг
5.00
рейтинг книги
Системный Нуб