Чтение онлайн

на главную

Жанры

Шрифт:

Несколько страниц назад я принялся разъяснять фразу: «равновесное состояние является наиболее вероятным». Надеюсь, что я справился с этой задачей. Мы увидели, что наблюдаемое состояние тела осуществляется огромным числом микросостояний; выяснили, что число микросостояний пропорционально вероятности макросостояний; методом аналогии показали, что вероятность состояния возрастает с беспорядком в расположении и движении частиц. Из всего этого по законам логики мы пришли к этой действительно ёмкой фразе, усвоение которой, я боюсь, потребовало от читателя некоторого напряжения.

В студенческие годы мне попала в руки толстая книга в ярко-синем переплёте, изданная в Томске. Это был курс термодинамики. В предисловии автор писал:

«Хочу

предупредить учащихся о том, что понятие энтропии усваивается с большим трудом. Я лично понял, что такое энтропия, примерно после двадцати лет педагогической деятельности».

Я помню, как изумила меня наивная и откровенная скромность автора.

Содержание только что прочитанного параграфа приведёт нас, как вы сейчас увидите, к понятию энтропии. Так что, если вам было трудно, не удивляйтесь.

Обезьяна за пишущей машинкой

Второе начало термодинамики является железным законом природы. На предыдущих страницах мы попытались сформулировать его на языке вероятности. Мы увидели, что равновесное состояние систем наиболее вероятное, и поэтому вполне понятно стремление всех тел и систем перейти к покою или, вернее, к «мёртвой жизни». И вот вопрос – раз речь идёт «всего лишь» о вероятностном законе, то почему не допустить, что второе начало может нарушаться и тела самопроизвольно могут выходить из положения равновесия? Зафиксированы же в истории Монте-Карло серии из двадцати двух выпадений красного подряд?!

Строгое подчинение природы второму началу термодинамики есть, конечно, следствие закона больших чисел.

Вместо десятков и сотен тысяч событий, фигурирующих в отчёте игорного дома, в мире молекул мы оперируем числами, выражающимися единицей с двадцатью нулями. Поэтому самые крошечные вероятности редчайших и драматических событий, случающихся в Монте-Карло, в миллиарды миллиардов раз превосходят вероятности самопроизвольного отклонения системы молекул от положения равновесия. Но если все те же законы больших чисел не запрещают абсолютно появления невероятных событий, то интересно узнать, какова вероятность «невероятного» события.

Посадим шимпанзе за пишущую машинку. Посмотрев, как бойко отстукивает страницу человек, обезьяна тоже начинает печатать. Буква за буквой, строка за строкой… Через полчаса, выкрутив обезьянью страницу из машинки, читаем:

Не мысля гордый свет забавить,Вниманье дружбы возлюбя,Хотел бы я тебе представитьЗалог достойнее тебя…

Возможно? А почему нет? Шимпанзе колотит по клавишам как попало. Последовательность букв может быть любой, так как они равновероятны. А вычислить вероятность каждой из них и в том числе четырех строк, открывающих «Евгения Онегина», абсолютно просто. Букв в алфавите, будем считать, тридцать. Вероятность 1 «н» на первом месте – равна одной тридцатой 1/30; вероятность «не» – 1/900 = (1/30), вероятность «не м» – 1/2700 = (1/30)и так далее. Всего букв в четырех строках 86. Вероятность напечатать случайно эти четыре строки равна одной тридцатой в восемьдесят шестой степени (1/30). Это число равно 10, то есть единице, поделённой на единицу со 127 нулями.

Велика или мала вероятность обезьяньего гения? Число вроде бы совершенно мизерное, но сравним его с вероятностью отклонения тела от равновесия. Подберём пример нарушения равновесия, где была бы такая же вероятность.

Скажем так, если тело находится в тепловом покое, то, разумеется, все его точки имеют одинаковую температуру. Но имеется все же крошечная вероятность, что второе начало термодинамики нарушится. Так что в принципе возможно, что на одном конце булавки температура вдруг ни с того ни с сего станет выше, чем на другом. Чем больше отклонение, тем меньше его вероятность. На сколько же долей градуса нарушится второе начало с вероятностью в 10, то есть с той вероятностью, с которой обезьяна сочинила пушкинское четверостишие? Можно рассчитать – оказывается, на 10градуса. А это очень и очень далеко за пределами измерительной техники. Даже вероятность создания всего «Евгения Онегина» методом случайного «тыка» в клавиши – а она равна что-то 10– в миллион раз больше вероятности флуктуации температуры, которую можно было бы обнаружить обычными приборами.

Пожалуй, приведённые данные достаточно красноречивы, и я надеюсь, что доказал читателям полную невозможность самопроизвольного выхода из равновесия окружающих нас тел. А этим, в свою очередь, доказал невозможность создания вечного двигателя второго рода. Неизмеримо вероятнее обезьяне написать собрание сочинений Пушкина, чем создать захудаленький вечный двигатель, выкачивающий тепло из окружающей среды.

Превосходной моделью, иллюстрирующей незыблемость вероятности равновесного состояния, служит ящик, в который засыпают чёрные и белые зерна. Если их перемешать лопаткой, то скоро они распределятся равномерно по всему ящику.

Зачерпнув наудачу горсть их, мы найдём в ней примерно одинаковое число белых и чёрных зёрен. Сколько бы мы ни перемешивали, результат будет всё время тем же – равномерность сохраняется. Но почему не происходит разделения зёрен? Почему долгим перемешиванием не удастся чёрные зерна переместить вверх, а белые вниз?

Всё дело в вероятности. Такое состояние, при котором зерна распределены беспорядочно, то есть чёрные и белые равномерно перемешаны, может быть осуществлено огромным множеством способов (любые два зёрнышка – чёрное и белое – можно поменять местами, а беспорядок останется беспорядком) и, следовательно, обладает самой большой вероятностью. Напротив, такое состояние, при котором все чёрные зерна окажутся вверху, а белые внизу, единственное (ни одного чёрного зёрнышка нельзя заменить на белое; как только это сделаешь полный порядок пропал). Поэтому вероятность его осуществления ничтожно мала.

Вечное тепловое движение непрерывно перетасовывает молекулы, перемешивает их так, как это делает лопатка с зёрнами в ящике.

Энтропия

Внесём небольшое терминологическое изменение в закон о максимальной вероятности равновесного состояния.

Очень часто в физике величины, которые меняются в больших пределах, заменяют их логарифмами.

Напомним, что такое логарифм. Когда я пишу о науке для так называемого массового читателя, для читателя вообще («дженерал ридер» – по-английски) и вынужден использовать какой-либо термин, который в науке имеет такое же самое распространение, как, ну скажем, поэма в литературе, то впадаю в смущение. Объяснять?! Можно обидеть читателя, который вправе сказать: «За кого ты меня принимаешь, неграмотный я, что ли?» Не объяснять? А вдруг он позабыл и не поймёт того, о чём будет говориться дальше. Поэтому все же напомню: 10= 100; 10= 1000; 10= 10000 и т.д. Числа 2, 3, 4 и т.д. представляют собой десятичные логарифмы 100, 1000, 10000 и т.д. Как видим, само число возросло в сто раз, а логарифм лишь вдвое.

Логарифмы оказываются полезными и в нашем случае. Вместо того чтобы пользоваться «вероятностью состояния», в обиход вводят «логарифм вероятности состояния». Этот логарифм и называется энтропией.

Закон природы, согласно которому тепло не переходит от холодного к горячему, маховик не раскручивается за счёт охлаждения оси и прилегающего к нему воздуха и раствор медного купороса не делится на воду и купорос, кратко формулируется так: энтропия в естественных процессах всегда растёт.

Закон возрастания энтропии – важнейший закон природы. Из него вытекает, в частности, и невозможность создания вечного двигателя второго рода, и, что то же самое, утверждение, что предоставленные сами себе тела стремятся к равновесию.

Поделиться:
Популярные книги

Измена. Не прощу

Леманн Анастасия
1. Измены
Любовные романы:
современные любовные романы
4.00
рейтинг книги
Измена. Не прощу

Неудержимый. Книга II

Боярский Андрей
2. Неудержимый
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Неудержимый. Книга II

Возвышение Меркурия. Книга 16

Кронос Александр
16. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 16

Измена. Осколки чувств

Верди Алиса
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Осколки чувств

Отборная бабушка

Мягкова Нинель
Фантастика:
фэнтези
юмористическая фантастика
7.74
рейтинг книги
Отборная бабушка

Измена. Ребёнок от бывшего мужа

Стар Дана
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Ребёнок от бывшего мужа

Неверный. Свободный роман

Лакс Айрин
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Неверный. Свободный роман

Бывшие. Война в академии магии

Берг Александра
2. Измены
Любовные романы:
любовно-фантастические романы
7.00
рейтинг книги
Бывшие. Война в академии магии

Ты нас предал

Безрукова Елена
1. Измены. Кантемировы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты нас предал

В теле пацана 6

Павлов Игорь Васильевич
6. Великое плато Вита
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
В теле пацана 6

Вернуть невесту. Ловушка для попаданки 2

Ардова Алиса
2. Вернуть невесту
Любовные романы:
любовно-фантастические романы
7.88
рейтинг книги
Вернуть невесту. Ловушка для попаданки 2

Его маленькая большая женщина

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.78
рейтинг книги
Его маленькая большая женщина

Инферно

Кретов Владимир Владимирович
2. Легенда
Фантастика:
фэнтези
8.57
рейтинг книги
Инферно

Золушка вне правил

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.83
рейтинг книги
Золушка вне правил