Невидимая Вселенная. Темные секреты космоса
Шрифт:
Эволюция живой звезды в белый карлик похожа на драматичный танец со смертью, в котором звезда сбрасывает с себя вещество. И поэтому масса оставшегося белого карлика никогда не будет превышать массу Солнца больше, чем в 1,44 раза. Это такая особая граница, известная как предел Чандрасекара, названный в честь индийского астрофизика Субраманьяна Чандрасекара (1910–1995). В активной звезде, где в центре происходят ядерные реакции, всегда будет сохраняться баланс между излучением термоядерных реакции, выталкивающим вещество звезды наружу, и силой гравитации, сжимающей звезду внутрь. В белом карлике же никаких ядерных реакций нет и в помине, однако гравитация по-прежнему не отступает. От коллапса звезду удерживает только то, что называется давлением вырожденного электронного газа. Это квантовомеханический эффект,
Но как может белый карлик, масса которого в 1,44 раза больше массы Солнца, внезапно превысить этот магический предел? И вот тут в игру вступает вторая звезда-компаньон вместе со вторым условием образования сверхновой типа 1а. Если белый карлик обращается вокруг другой, как правило, более крупной звезды, гравитационная сила белого карлика сможет притянуть вещество своего компаньона. Обычные активные звезды обладают протяженной атмосферой, вещество которой непрерывно притягивается к поверхности белого карлика. Со временем белый карлик становится все более и более массивным, пока не достигнет предела Чандрасекара, и тогда… Бум! Вот вам и сверхновая типа 1а.
Понятное дело, ход событий, во время которых рождается сверхновая, значительно сложнее, чем просто взрыв, но общий принцип я вам описал. Удивительно, что все эти взрывы случаются с весьма схожими между собой звездами с практически одинаковой массой, а именно 1,44 массы Солнца. Поэтому и все вспышки сверхновых этого типа очень похожи, что позволяет нам использовать их в качестве мощных стандартных свечей. Правда, у этих сверхновых тоже есть различия. Точная светимость зависит, в частности, оттого, какой газ белый карлик притянул от соседней звезды. А еще эти различия заметны благодаря скорости затухания звезды.
(Некоторые сверхновые типа la образуются при столкновении двух белых карликов. У них может быть немного другая яркость, и об этом эффекте не стоит забывать при использовании сверхновых типа 1а в качестве стандартных свечей.)
Сегодня мы не сомневаемся, что во всем этом можно разобраться. Поэтому при обнаружении сверхновой типа 1а в далекой галактике мы можем изучить, насколько быстро уменьшается яркость в первые несколько дней. Таким образом нам удается довольно точно определить, какой была максимальная светимость, а потом сравнить с дошедшим до нас светом. Получается, с помощью простейшей математики можно рассчитать расстояние точно так же, как с цефеидами или факелами вдоль дороги.
Однако в сверхновых интересна не только их яркость. Еще можно наблюдать спектральные линии и, следовательно, красное смещение. Используя сверхновые в качестве стандартных свечей, можно сделать то же самое, что сделал Хаббл, когда открыл расширение Вселенной. Но сверхновые позволяют заглядывать гораздо дальше в космос, чем Хаббл со своими цефеидами вообще смел надеяться.
Таким образом, наблюдая далекие вспышки сверхновых, можно определить как расстояние (на основе яркости), так и степень расширения пространства с момента начала излучения света (через красное смещение). А еще, глядя на отдаленные объекты, мы заглядываем в прошлое. Чем дальше от нас сверхновая, тем более отдаленный период мы можем рассмотреть. Наблюдая за множеством сверхновых на различном расстоянии от Земли, мы словно создаем обратную временную шкалу истории Вселенной. Соответственно, мы можем измерить, как со временем меняется красное смещение. Значит, мы способны выяснить, насколько быстро Вселенная расширяется последние миллиарды лет. Взрывающиеся белые карлики становятся маяками, освещающими историю Вселенной. Помимо того, что вспышки сверхновых выполняют функцию стандартных свечей, остатки от взрывов можно считать одними из красивейших объектов во Вселенной. На рисунке вы увидите тысячелетние останки сверхновой звезды типа 1а, на которую весь мир мог любоваться в 1006 году нашей эры.
В 1006 году н. э. звездочеты
Ежегодно в январе Американское астрономическое общество (American Astronomical Society) организовывает грандиозную конференцию. На таких встречах представляют многие новаторские результаты исследований. И конференция 1998 года не стала исключением. На ней объявили об открытии, которому суждено было перевернуть наш мир с ног на голову, а именно об открытии темной энергии.
Чуть менее чем за год до этого, в июле 1997 года, были представлены результаты исследовательского проекта Supernova Cosmology Project. Тогда еще без особых сенсаций. С 1988 года группа ученых под руководством Сола Перлмуттера занималась поиском далеких сверхновых. Они ставили перед собой цель описать историю расширения Вселенной, изучая взаимосвязь между красным смещением и яркостью от далеких сверхновых типа 1а. Однако вспышки сверхновых — явление не самое частое, поэтому для большей точности наблюдений ученые разработали методику, позволяющую сначала следить за обширными небесными пространствами, используя небольшой телескоп. А уже после обнаружения сверхновой маленьким телескопом можно было подключить к наблюдениям большой телескоп, использование которого обходилось недешево.
В статье 1997 года группа Перлмуттера представила наблюдения за семью далекими сверхновыми. Они также выяснили, из чего должна была состоять Вселенная, чтобы подтверждать эти наблюдения. Представленный результат соответствовал ожиданиям большинства современников. Наблюдаемые ими сверхновые свидетельствовали о том, что Вселенная наполнена обычным веществом и нет никакой потребности в добавлении странных ингредиентов, таких как темная энергия. В статье они даже пишут, что их результаты несовместимы со Вселенной, в которой преобладает темная энергия, но к собранию Американского астрономического общества шесть месяцев спустя все изменилось. Результаты, к которым теперь добавились несколько новых сверхновых, указывали на то, что Вселенная расширяется с увеличивающейся скоростью, Вселенная, в которой невероятно много отталкивающей гравитации.
Сол Перлмуттер, Брайан Шмидт и Адам Рисе руководили работой по наблюдениям сверхновых, рассказавших нам об ускоряющейся Вселенной.
Почему же всего за полгода выводы настолько изменились? А все потому, что было проанализировано большее количество сверхновых. В 1997 году ученые исследовали лишь семь сверхновых — не самая большая выборка, — а потому ошибка неудивительна. Одна из семи сверхновых выпадала из общей картины. Когда эту причуду сравнивали только с шестью другими сверхновыми, на странное поведение внимания не обратили. До конференции, состоявшейся в январе 1998 года, Перлмуттер и его коллеги проанализировали поведение 21 сверхновой. Странную сверхновую разоблачили, и результаты коренным образом изменились. Все указывало на ускоряющееся расширение Вселенной.
Схемы и числа буквально распирало от отталкивающей гравитации. К концу 1998 года группа Перлмуттера опубликовала статью, в которой они проанализировали целых 42 далекие сверхновые. Результаты остались неизменными: отталкивающая гравитация, похоже, никуда исчезать не собиралась.
Места для сомнений оставалось все меньше, ведь группа Перлмуттера была не одинока в своих исследованиях. На момент публикации результатов в январе 1998 года другая исследовательская группа уже работала над анализом наблюдений за сверхновыми. Группу возглавлял американский астроном Брайан Шмидт. Совместно с Адамом Риссом Шмидт и его группа провели точные наблюдения за различными сверхновыми звездами.