Чтение онлайн

на главную

Жанры

Невидимый современник
Шрифт:

Идея далеко не такая фантастическая, как может показаться на первый взгляд. Если раствор нагреть, молекулы ДНК сами по себе разделяются на отдельные нити. Правда, при остывании они снова соединяются. Однако, если раствор охладить очень быстро, то нити так и остаются разъединенными. Эта методика была использована в радиобиологических опытах московским биофизиком Павлом Иосифовичем Цейтлиным и молодым сотрудником нашей лаборатории Николаем Рябченко.

В этих опытах получалась совершенно иная картина, чем в прежних. Вязкость растворов падала при значительно меньших дозах. Не буду приводить многочисленных цифр, скажу только, что в пересчете на одно клеточное ядро облучение дозой всего в один рентген должно создавать около десяти одиночных разрывов.

Здорово? Пока еще нет, потому что два важных вопроса остаются открытыми. Во-первых, опыты ставились на водных растворах ДНК, и что происходит при ее облучении в составе живой клетки — неизвестно. А во-вторых, неясно, какую биологическую роль могут играть одиночные разрывы, если они не сказываются ни на химических, ни на физико-химических свойствах молекул.

На первый из этих вопросов уже получен достаточно четкий ответ. В то время, когда я пишу эти строки, Борис Иванник собирается защищать кандидатскую диссертацию, посвященную сравнительному анализу действия радиации на нуклеиновые кислоты в водном растворе и при облучении целостного организма. Главное внимание в этой работе уделено одиночным разрывам. Много получено ответов на важные вопросы, но нас сейчас волнует ответ лишь на один из них: между первичным действием лучей на ДНК в растворе и в составе живых клеток нет никаких существенных различий.

Что же касается второго вопроса, то прямых опытов для ответа на него поставить еще не удалось. Но ответ напрашивается занятный. Напомню, как в клетке появляются новые молекулы ДНК. Возле каждой из нитей двойной спирали строится новая; в результате получаются две молекулы, в состав каждой из них входит одна старая и одна новая нить. Представим себе, что получится, если молекула с одиночным разрывом начнет размножаться. Очевидно, что возле нити с разрывом построится также нить, имеющая разрыв, и из двух новых молекул одна будет вполне нормальной, а другая — с полным двойным разрывом. Следовательно, изменения, довольно несущественные сами по себе, могут привести к плачевным последствиям при самоудвоении молекул.

Нужно заметить, что возможны и другие предположения о природе молекулярных изменений, лежащих в основе радиобиологических эффектов. Есть основания ставить под подозрение и молекулярные сшивки, то есть соединение нитей друг с другом, и связи между нуклеиновой кислотой и белком, и еще кое-что. Все эти изменения вызываются ионизирующими лучами и могут быть увязаны с биологическими эффектами.

Эти исследования — передний край науки, и, как всегда на переднем крае, работа здесь идет быстро. Не исключено, что к тому времени, когда книжка появится на прилавках магазинов, ответ на вопрос о природе первичных молекулярных изменений будет уже найден.

Исправление ошибок

Открытие пострадиационного восстановления показало, что возникновение мутации не одномоментное событие, а результат сложной цепи событий, протекающих во времени. Иного, конечно, и быть не могло. Это во времена Ньютона считали возможным мгновенное действие. В XX веке мы знаем, что все процессы имеют длительность — это одно из следствий теории относительности. Правда, практически очень быстрые процессы (пусть даже идущие и гораздо более медленно, чем со скоростью света) мы, биологи, можем рассматривать как мгновенные. Но результаты опытов по восстановлению ясно указывали на то, что восстановление мутаций — процесс, с течением которого во времени нельзя не считаться.

Но что представляет собой восстановление? Изучая хромосомные мутации, ученые пришли к выводу, что первичный эффект облучения состоит в разрыве хромосом. А если так, то восстановление должно заключаться в срастании образовавшихся обломков. Такое предположение многие и делали. Ведь действительно, если результат облучения — образование разломов, то восстановление иначе и нельзя себе представить. Но кое-кому такой процесс представлялся совершенно невероятным, потому

что он невозможен с физико-химической точки зрения. А раз так, то приходилось пересмотреть старый вопрос о природе первичных повреждений при образовании хромосомных мутаций.

Ученые начали ломать головы, и, как обычно бывает в подобных случаях, сразу появилось несколько гипотез. А потом, как тоже часто бывает, выяснилось, что сходные мысли высказывались уже давно.

Самым естественным было предположить, что во время облучения возникают не разломы, а лишь места, способные к разлому, — потенциальные разломы. Поскольку хромосома состоит из пучка молекул нуклеопротеида, потенциальный разлом можно себе представить как разрыв части молекул, составляющих этот пучок. В дальнейшем в зависимости от обстоятельств произойдет одно из двух: либо порвутся и остальные нити, либо порванные срастутся. В первом случае возникнет разлом, во втором произойдет восстановление. Такое предположение приходило в голову многим генетикам.

Английский ученый Ривелл выступил с другой гипотезой. Он обратил внимание на некоторые закономерности образования хромосомных обменов, которые можно было объяснить тем, что первичным событием является не разрыв, а обмен.

Но ни одна, ни другая гипотеза не могли объяснить тот удивительный факт, что при облучении хромосом в делящихся клетках никаких изменений, которые можно было бы сразу же заметить, не возникает. Можно направить на отдельную хромосому микропучок ионизирующих лучей (микропучок необходим для того, чтобы не убить клетку) и дать очень большую дозу. Но даже совершенно фантастическая доза в миллион рентген хромосому не ломает. А в самых обычных опытах при облучении клеток незадолго до деления эффективность воздействия сильно падает. Анализ кривых зависимости эффекта от стадии, на которой происходит облучение, показывал, что переход первичных изменений в окончательную форму приурочен к определенному периоду в жизни клетки. Он соответствовал окончанию удвоения содержания ДНК в ядре, то есть совпадал со временем образования новых хромосом.

Эти факты приводили к мысли о том, что раз переход первичных повреждений в наблюдаемую форму происходит при образовании новых хромосом, значит именно дочерние структуры и являются носителями наблюдаемых изменений. Так родилась матричная гипотеза хромосомных мутаций. Первичное повреждение состоит, согласно этой гипотезе, в подавлении или изменении аутокаталитических (матричных) свойств облученной хромосомы. В результате дочерние хромосомы строятся ненормально, с ошибками. Если же ко времени образования новых структур повреждение восстановится, то синтез произойдет нормально и никаких изменений мы не заметим.

Перечисленные гипотезы родились в конце 50-х — начале 60-х годов. Однако, как выяснилось через некоторое время, весьма похожие взгляды высказывались и гораздо раньше. Еще в конце 30-х годов немецкий цитолог Бауер подробно обсуждал гипотезы, совершенно подобные тем, которые теперь имеют хождение под названиями гипотезы потенциальных разломов и обменной гипотезы, а выдающийся русский биолог, академик Николай Константинович Кольцов тогда же высказывал соображения, очень близкие к нынешней матричной гипотезе. В том, что об этих работах забыли почти на тридцать лет, нет ничего удивительного: в них просто не было надобности. А когда появились факты, противоречившие фрагментационной гипотезе, их пришлось выдвинуть заново, а потом вспомнить и о старых работах. Итак, три гипотезы… Какая же верна? На этот вопрос я не смогу ответить, потому что как раз теперь в радиобиологии на повестке дня стоит решение этого вопроса. Можно только сказать, что гипотеза потенциальных разломов меньше соответствует фактам, чем две другие. Что же касается обменной и матричной гипотез, то они друг другу не противоречат. Скорее они — две стороны одной и той же медали. Обменная гипотеза говорит о связи между фрагментами и обменами, но совершенно не затрагивает вопроса о природе первичных изменений, который стоит в центре внимания матричной.

Поделиться:
Популярные книги

Проклятый Лекарь. Род III

Скабер Артемий
3. Каратель
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Проклятый Лекарь. Род III

Мастер Разума III

Кронос Александр
3. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.25
рейтинг книги
Мастер Разума III

Измена. Возвращение любви!

Леманн Анастасия
3. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Возвращение любви!

Неудержимый. Книга XI

Боярский Андрей
11. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XI

Сердце Дракона. Том 9

Клеванский Кирилл Сергеевич
9. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.69
рейтинг книги
Сердце Дракона. Том 9

Война

Валериев Игорь
7. Ермак
Фантастика:
боевая фантастика
альтернативная история
5.25
рейтинг книги
Война

Под маской моего мужа

Рам Янка
Любовные романы:
современные любовные романы
5.67
рейтинг книги
Под маской моего мужа

Камень. Книга 3

Минин Станислав
3. Камень
Фантастика:
фэнтези
боевая фантастика
8.58
рейтинг книги
Камень. Книга 3

Измена. Право на счастье

Вирго Софи
1. Чем закончится измена
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на счастье

Газлайтер. Том 12

Володин Григорий Григорьевич
12. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Газлайтер. Том 12

Сиротка

Первухин Андрей Евгеньевич
1. Сиротка
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Сиротка

Охота на эмиссара

Катрин Селина
1. Федерация Объединённых Миров
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Охота на эмиссара

Кодекс Охотника. Книга XV

Винокуров Юрий
15. Кодекс Охотника
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XV

Сердце Дракона. Том 12

Клеванский Кирилл Сергеевич
12. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.29
рейтинг книги
Сердце Дракона. Том 12