Чтение онлайн

на главную - закладки

Жанры

Нейронный сети. Эволюция
Шрифт:

Все примеры, которые будут реализованы в Python, можно без труда скачать по следующей ссылке:

https://github.com/CaniaCan/neuralmaster

В дальнейшем, мы не раз повторим процесс эволюции к нашему искусственному нейрону. Добавим к нему множество входов и выходов, попутно добавим в его структуру условие – функцию активации. Соответственно узнаем, что такое функции активации, реализуем самые распространённые из них, такие как – единичная функция, сигмоида, RELU, гиперболический тангенс, Softmax.

Следующим этапом нашей эволюции, будет взаимодействие нейронов. Научим их общаться между собой. Или говоря иными словами – объединим в сети. Что в свою очередь, потребует

новых навыков и знаний. Словом, теперь мы станем называть нейроны участвующие в её “жизнедеятельности”, нейронной сетью.

На основе таких сетей, на Puthon, напишем программу, способную распознавать рукописные цифры из большой базы данных – 60000 примеров рукописных цифр.

И наконец, мы создадим свёрточную нейронную сеть, и научим её, на той же базе, распознавать рукописные цифры.

ГЛАВА 1

Основа для создания искусственного нейрона

Где используются нейронные сети

Современные вычислительные машины выполняют математические операции с огромной скоростью. Решения различных арифметических и логических операций с числами – суть работы любого компьютера.

Сложение чисел с очень большой скоростью – это огромное преимущество компьютера над мозгом человека. Сложение больших чисел у человека вызывает затруднение, не говоря о скорости их вычисления.

Но есть задачи, с которыми наш мозг справляется куда эффективнее любого компьютера. Если мы взглянем на изображение ниже, то легко можем распознать что на нем изображено:

Вы без труда узнаете, что изображено на картинке, так как наш мозг идеальное средство для анализа изображения и его классификации. А вот компьютеру, напротив, очень трудно решать подобные задачи.

Но мы можем использовать вычислительные ресурсы современных компьютеров для моделирования работы мозга человека – искусственной нейронной сети.

Как устроены биологические нейронные сети

Что такое биологический нейрон и нейронные сети? У нас с вами и многих животных есть мозг. Мозг в свою очередь представляет собой сложную биологическую нейронную сеть, которая принимает информацию от органов чувств и обрабатывает её (распознавание слуховой и зрительной информации, распознавание вкуса, тактильных ощущений и т.д.).

Строение биологического нейрона:

Собственно, эту биологическую модель нейрона мы и будем моделировать. А точнее нам понадобится смоделировать некую структуру, которая принимает на вход сигнал (дендрит), преобразовать этот сигнал по типу – как это происходит в биологическом нейроне, и передать преобразованный сигнал на выход (аксон).

Искусственный нейрон – математическая модель биологического нейрона.

Модель искусственного нейрона (слева – биологический нейрон, справа – искусственный):

Наш мозг, как и любая биологическая нейронная сеть, состоит из множества нейронов.

В человеческом головном мозге насчитывается более 80 миллиардов нейронов, у каждого из который тысячи входов и выходов, и каждый из них соединен с входами других нейронов. И такую модель, в ограниченных объёмах, мы тоже с успехом можем упростить.

Переход к модели искусственных нейронных сетей:

Уровень вычислительной мощности для моделирования ИНС

Мы уже знаем, что в мозге человека более 80 миллиардов нейронов, у каждого из который тысячи входов и каждый из них соединен с выходами других нейронов.

Смоделировать такой объём нейронов и количество их связей, мы на сегодняшний день не сможем. Но, мы можем упростить модель работы мозга, правда в гораздо меньших объёмах. Уровень вычислительной мощности современных компьютеров, при моделировании биологических нейронных сетей, как можно видеть на слайде ниже, немногим выше обычной пиявки.

Насколько сильно мы уменьшаем количество нейронов и связей по сравнению с человеческим мозгом:

Как видите, до человека еще достаточно далеко. Но и этого объёма, что будет доступен, будет вполне достаточно для наших задач.

Почему работают нейронные сети

Весь секрет работы нейронных сетей заключается в работе синапсов, которые вы можете видеть на изображении биологического нейрона:

Синапсы – место стыка выхода одного нейрона и входа другого, где происходит усиление и ослабление сигнала. В усилении и ослаблении сигнала и происходит вся суть работы и обучения нейронных сетей. Если при обучении правильно подобрать параметры в синапсах, то входной сигнал, после прохода через нейронную сеть, будет преобразовываться в верный сигнал на выходе.

Все выше сказанное сейчас для вас представляется, лишь теоретической абстракцией и без практики очень трудным к осмыслению, но мы все разберем по полочкам – всю суть работы этого механизма. Действительно, на данном этапе невозможно понять, как работает нейрон, в чем смысл ослабления и усиления сигналов в синапсах, но информация, которую мы получили поможет нам в будущем, когда будем разбираться, что же всё-таки происходит внутри нейрона и нейронных сетях.

Как автоматизировать работу

Наверняка, многим из нас, порой до чёртиков, надоедало повторять одни и те же действия на работе или учёбе. В этот момент кажется, что ничего не может быть хуже каждодневной рутины.

Давайте включим воображение и представим себя офисным работником. Суть нашей работы – классификация данных на два вида. Каждый день, нам приходит список с данными, где может содержаться более 1000 позиций, которые мы самостоятельно должны отделить друг от друга, на основании чего сказать – какой из двух видов стоит за определенной позицией.

Поделиться:
Популярные книги

Огни Аль-Тура. Единственная

Макушева Магда
5. Эйнар
Любовные романы:
любовно-фантастические романы
эро литература
5.00
рейтинг книги
Огни Аль-Тура. Единственная

Неудержимый. Книга X

Боярский Андрей
10. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга X

Идеальный мир для Лекаря 13

Сапфир Олег
13. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 13

Гром над Империей. Часть 1

Машуков Тимур
5. Гром над миром
Фантастика:
фэнтези
5.20
рейтинг книги
Гром над Империей. Часть 1

Проклятый Лекарь V

Скабер Артемий
5. Каратель
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Проклятый Лекарь V

Афганский рубеж

Дорин Михаил
1. Рубеж
Фантастика:
попаданцы
альтернативная история
7.50
рейтинг книги
Афганский рубеж

Большая Гонка

Кораблев Родион
16. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Большая Гонка

Князь

Мазин Александр Владимирович
3. Варяг
Фантастика:
альтернативная история
9.15
рейтинг книги
Князь

Войны Наследников

Тарс Элиан
9. Десять Принцев Российской Империи
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Войны Наследников

Антимаг его величества. Том III

Петров Максим Николаевич
3. Модификант
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Антимаг его величества. Том III

Совок 5

Агарев Вадим
5. Совок
Фантастика:
детективная фантастика
попаданцы
альтернативная история
6.20
рейтинг книги
Совок 5

Измена. Осколки чувств

Верди Алиса
2. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Осколки чувств

Камень

Минин Станислав
1. Камень
Фантастика:
боевая фантастика
6.80
рейтинг книги
Камень

Кодекс Крови. Книга VII

Борзых М.
7. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VII