Чтение онлайн

на главную

Жанры

Нейросети. Генерация изображений
Шрифт:

– Финальный слой генератора имеет функцию активации `tanh`, чтобы ограничить значения изображений в диапазоне [-1, 1].

4. Создание дискриминатора (`build_discriminator`):

– Дискриминатор представляет собой нейронную сеть, которая принимает изображения и классифицирует их на "реальные" (1) или "сгенерированные" (0).

– В данном примере дискриминатор также состоит из полносвязных слоев с функцией активации LeakyReLU.

– Финальный слой дискриминатора использует сигмоидную функцию активации для получения вероятности

принадлежности изображения к классу "реальные".

5. Определение функций потерь и оптимизаторов:

– В данном примере используется функция потерь бинарной кросс-энтропии (`BinaryCrossentropy`).

– Оптимизаторы для генератора и дискриминатора – `Adam` с заданным коэффициентом обучения.

6. Обучение GAN (`train_gan`):

– На каждой итерации обучения:

– Генерируется случайный вектор шума из латентного пространства.

– Генератор создает синтетические изображения на основе этого шума.

– Из обучающего набора выбирается случайный батч реальных изображений.

– Собирается батч из реальных и сгенерированных изображений.

– Дискриминатор обучается на этом батче с метками "реальные" и "сгенерированные" соответственно.

– Генератор обучается на сгенерированном шуме с метками "реальные".

– Обучение происходит чередованием обучения дискриминатора и генератора, чтобы они соревновались друг с другом.

7. Обучение GAN:

– GAN собирается из генератора и дискриминатора в последовательную модель `gan`.

– Обучение GAN происходит вызовом метода `compile` с функцией потерь `binary_crossentropy` и оптимизатором `generator_optimizer`.

Обучение GAN (Generative Adversarial Network) представляет собой процесс обучения двух компонентов сети: генератора (Generator) и дискриминатора (Discriminator), взаимодействующих друг с другом в конкурентной игре.

Вначале создается последовательная модель GAN, объединяющая генератор и дискриминатор. Это делается путем последовательного объединения слоев генератора и слоев дискриминатора в единую модель. Это позволяет обращаться к генератору и дискриминатору как к единой сущности и проводить общую оптимизацию в процессе обучения.

Для обучения GAN определяется функция потерь (loss function), которая определяет, насколько хорошо работает GAN. В случае GAN, функция потерь использует обычно бинарную кросс-энтропию (binary_crossentropy), которая является распространенным выбором для бинарных классификационных задач.

Также выбирается оптимизатор (optimizer), который отвечает за обновление весов сети в процессе обучения с учетом значения функции потерь. В данном случае, указанный `generator_optimizer` используется для оптимизации параметров генератора.

Обучение GAN происходит чередованием двух основных этапов – обучение генератора и обучение дискриминатора. На каждом этапе происходит подача различных данных и обновление соответствующих параметров моделей. Главная идея заключается

в том, что генератор стремится создать реалистичные данные, которые дискриминатор не сможет отличить от реальных, в то время как дискриминатор старается правильно классифицировать как реальные, так и сгенерированные данные.

В процессе обучения GAN происходит динамический баланс между генератором и дискриминатором, и оба компонента учатся улучшать свои навыки в противостоянии друг другу. Целью обучения GAN является достижение равновесия (equilibrium), когда генератор создает реалистичные данные, а дискриминатор неспособен точно отличить сгенерированные данные от реальных.

8. Запуск обучения:

– Обучение GAN происходит путем вызова функции `train_gan`, которая реализует процесс обучения и выводит значения функций потерь на каждой итерации.

Функция `train_gan` в приведенном выше коде выполняет обучение GAN (Generative Adversarial Network) путем последовательного обучения генератора и дискриминатора на заданном наборе данных (dataset) в течение определенного числа эпох (epochs). Здесь предполагается, что у вас уже есть предопределенная архитектура GAN, которая объединяет генератор и дискриминатор в модель `gan`.

Давайте рассмотрим шаги, которые выполняются в функции `train_gan`:

1. Разделение генератора и дискриминатора:

В начале функции, модель GAN разделяется на генератор (Generator) и дискриминатор (Discriminator). Это делается для последующего отдельного обучения каждого из компонентов на различных данных и с разными метками.

2. Цикл по эпохам:

Функция `train_gan` содержит вложенный цикл, который итерируется по заданному числу эпох (epochs). Каждая эпоха представляет собой один полный проход по всему набору данных.

3. Обучение дискриминатора:

Внутри каждой эпохи, первым шагом является обучение дискриминатора. Для этого:

– Генерируются случайные шумовые входы (noise) для генератора.

– Генератор использует эти шумовые входы для создания сгенерированных данных (generated_data).

– Из текущего батча данных (batch) получаются реальные данные (real_data).

– Дискриминатор обучается на реальных и сгенерированных данных, сравнивая их с правильными метками (в данном случае "реальные" и "сгенерированные").

4. Обучение генератора:

После обучения дискриминатора, происходит обучение генератора.

– Генерируются новые шумовые входы для генератора.

– Генератор обучается на шумовых входах с целевыми метками "реальные". Главная цель генератора – создать данные, которые "обманут" дискриминатор, заставив его классифицировать их как "реальные".

5. Вывод результатов:

После каждой эпохи, выводятся значения функции потерь (loss) для генератора и дискриминатора. Это позволяет отслеживать процесс обучения и оценивать, как улучшается производительность GAN с течением времени.

Поделиться:
Популярные книги

Не кровный Брат

Безрукова Елена
Любовные романы:
эро литература
6.83
рейтинг книги
Не кровный Брат

Жребий некроманта 3

Решетов Евгений Валерьевич
3. Жребий некроманта
Фантастика:
боевая фантастика
5.56
рейтинг книги
Жребий некроманта 3

Неудержимый. Книга VI

Боярский Андрей
6. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга VI

Не грози Дубровскому! Том III

Панарин Антон
3. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том III

Баоларг

Кораблев Родион
12. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Баоларг

Идеальный мир для Социопата 2

Сапфир Олег
2. Социопат
Фантастика:
боевая фантастика
рпг
6.11
рейтинг книги
Идеальный мир для Социопата 2

Огненный князь

Машуков Тимур
1. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь

Кодекс Крови. Книга VII

Борзых М.
7. РОС: Кодекс Крови
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VII

Все не так, как кажется

Юнина Наталья
Любовные романы:
современные любовные романы
7.70
рейтинг книги
Все не так, как кажется

Не грози Дубровскому! Том V

Панарин Антон
5. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том V

Измена. Он все еще любит!

Скай Рин
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Измена. Он все еще любит!

«Три звезды» миллиардера. Отель для новобрачных

Тоцка Тала
2. Три звезды
Любовные романы:
современные любовные романы
7.50
рейтинг книги
«Три звезды» миллиардера. Отель для новобрачных

Идущий в тени 5

Амврелий Марк
5. Идущий в тени
Фантастика:
фэнтези
рпг
5.50
рейтинг книги
Идущий в тени 5

Физрук 2: назад в СССР

Гуров Валерий Александрович
2. Физрук
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Физрук 2: назад в СССР