Чтение онлайн

на главную - закладки

Жанры

Нейросети. Обработка естественного языка
Шрифт:

test_labels = [1, 0, 1, 0] # Метки для тестовых данных

test_sequences = tokenizer.texts_to_sequences(test_texts)

padded_test_sequences = tf.keras.preprocessing.sequence.pad_sequences(test_sequences, maxlen=max_sequence_length)

test_labels = np.array(test_labels)

test_loss, test_accuracy = model.evaluate(padded_test_sequences, test_labels)

print(f"Точность на тестовых данных: {test_accuracy:.4f}")

# Визуализация результатов

plt.figure(figsize=(12, 4))

plt.subplot(1, 2, 1)

plt.plot(history.history['accuracy'], label='Точность

на обучении')

plt.xlabel('Эпохи')

plt.ylabel('Точность')

plt.legend

plt.subplot(1, 2, 2)

plt.plot(history.history['loss'], label='Потери на обучении')

plt.xlabel('Эпохи')

plt.ylabel('Потери')

plt.legend

plt.show

На графиках, полученных после выполнения предоставленного кода, вы увидите результаты обучения и оценку модели. Давайте разберем подробнее:

1. График точности на обучении (Точность на обучении): Этот график показывает, как точность модели изменяется в течение эпох обучения. Точность на обучении измеряет, как хорошо модель предсказывает данные обучения. Вы ожидаете, что точность будет увеличиваться с каждой эпохой. Если точность растет, это может указывать на то, что модель успешно изучает данные.

2. График потерь на обучении (Потери на обучении): Этот график отражает, как уменьшается потеря модели на обучении с течением эпох. Потери представляют собой меру того, насколько сильно предсказания модели отличаются от фактических меток. Цель – минимизировать потери. Уменьшение потерь также указывает на успешное обучение модели.

На практике хорошо обученная модель будет иметь следующие характеристики:

– Точность на обучении растет и стабилизируется на определенном уровне.

– Потери на обучении уменьшаются и стабилизируются на низком уровне.

Если точность на тестовых данных также высока, это означает, что модель успешно обобщает знания на новые, ранее не виденные данные.

На графиках, представленных в коде, вы сможете оценить, как точность и потери меняются с течением эпох, и определить успешность обучения модели.

Кроме того, существуют более сложные архитектуры, которые комбинируют RNN и CNN, чтобы использовать преимущества обоих типов сетей. Например, архитектура под названием Transformer, изначально разработанная для машинного перевода, стала основой для многих современных моделей в NLP, таких как BERT и GPT.

Архитектура Transformer представляет собой мощный прорыв в области обработки естественного языка (NLP) и обработки последовательностей в целом. Она представляет собой нейронную сеть, спроектированную специально для работы с последовательностями, и она имеет ряд ключевых особенностей:

1. Механизм внимания: Одной из ключевых особенностей Transformer является механизм внимания.

Внимание позволяет модели фокусироваться на разных частях входных данных в зависимости от их важности. Это улучшает способность модели обрабатывать длинные последовательности и улавливать долгосрочные зависимости в данных.

2. Свёрточные и полносвязные слои: Transformer включает в себя свёрточные слои, которые работают с каждой позицией в последовательности независимо. Это позволяет модели извлекать локальные признаки из текста. Также в архитектуре есть полносвязные слои, которые обрабатывают информацию с учётом взаимодействия всех позиций в последовательности.

3. Многоуровневая структура: Transformer состоит из нескольких идентичных слоев, называемых "трансформерами", каждый из которых обрабатывает входные данные независимо. Это многоуровневое устройство позволяет модели извлекать признаки разной абстракции и работать с последовательностью на разных уровнях.

4. Многоголовое внимание: Transformer также использует многоголовое внимание (multi-head attention), что позволяет модели фокусироваться на разных аспектах входных данных одновременно. Это способствует изучению различных типов зависимостей в данных.

5.Позиционное кодирование: Поскольку Transformer не имеет встроенной информации о позиции слова в последовательности (как у RNN), используется позиционное кодирование. Это позволяет модели учитывать позицию каждого элемента в последовательности.

Архитектура Transformer и её модификации (например, BERT и GPT) стали основой для многих современных задач в NLP, включая машинный перевод, обработку текста, анализ тональности, вопросно-ответные системы и многое другое. Эти модели показали выдающуюся производительность благодаря своей способности к обучению на больших объёмах данных и обобщению на различные задачи.

BERT (Bidirectional Encoder Representations from Transformers) и GPT (Generative Pre-trained Transformer) – это две мощные модели для работы с естественным языком (Natural Language Processing, NLP). Они используют архитектуры Transformer для различных задач NLP, но они имеют разные цели и способы использования. Давайте рассмотрим каждую из них с подробным описанием и примерами использования.

BERT (Bidirectional Encoder Representations from Transformers)

Описание: BERT – это модель, разработанная Google AI, и она представляет собой архитектуру Transformer, обученную на огромном корпусе текста. Особенность BERT заключается в том, что она способна понимать контекст и семантику текста, учитывая оба направления (слева направо и справа налево) при обработке текста. Это делает BERT очень мощной для различных задач NLP.

Примеры использования:

1. Классификация текста: BERT может использоваться для задач классификации текста, таких как определение тональности (положительный/отрицательный отзыв), определение языка, категоризация текста и т. д.

Поделиться:
Популярные книги

Запасная дочь

Зика Натаэль
Фантастика:
фэнтези
6.40
рейтинг книги
Запасная дочь

Идеальный мир для Лекаря 7

Сапфир Олег
7. Лекарь
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 7

Мастер 6

Чащин Валерий
6. Мастер
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Мастер 6

Кодекс Охотника. Книга IV

Винокуров Юрий
4. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга IV

Архил...?

Кожевников Павел
1. Архил...?
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Архил...?

Ну привет, заучка...

Зайцева Мария
Любовные романы:
эро литература
короткие любовные романы
8.30
рейтинг книги
Ну привет, заучка...

Барон диктует правила

Ренгач Евгений
4. Закон сильного
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Барон диктует правила

На изломе чувств

Юнина Наталья
Любовные романы:
современные любовные романы
6.83
рейтинг книги
На изломе чувств

Охота на эмиссара

Катрин Селина
1. Федерация Объединённых Миров
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Охота на эмиссара

На границе империй. Том 7. Часть 2

INDIGO
8. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
6.13
рейтинг книги
На границе империй. Том 7. Часть 2

Король Масок. Том 1

Романовский Борис Владимирович
1. Апофеоз Короля
Фантастика:
городское фэнтези
попаданцы
аниме
5.00
рейтинг книги
Король Масок. Том 1

Релокант

Ascold Flow
1. Релокант в другой мир
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Релокант

Адмирал южных морей

Каменистый Артем
4. Девятый
Фантастика:
фэнтези
8.96
рейтинг книги
Адмирал южных морей

Возвышение Меркурия. Книга 17

Кронос Александр
17. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 17