Ничего кроме правды - о медицине, здравоохранении, врачах и пр
Шрифт:
В основу поисков были положены следующие факты и вытекающие из них идеи:
1. Не все лица из групп риска (гемосексуалисты, наркоманы, больные гемофилией, которым вливали кровь до того, как ее стали подвергать проверке на HIV) оказались инфицированными.
2. У тех же из них, которые были инфицированы, последствия были не одинаковыми: у одних быстро развивался иммунодефицит со всеми присущими ему тяжелыми последст-виями, у других же на длительный период сохранялось относительно удовлетворительное состояние.
3. Развитие инфекционного патологического процесса обусловлено не только имевшим место контактом с инфекционным началом, но взаимодействием организма с ним.
Иными словами, предотвратить заболевание и лечить заболевшего можно не только воздействуя на возбудителя, но и делая организм человека устойчивым, защищенным от него. Один путь достижения этой цели - уже упомянутая вакцинация - известна уже мно-го лет. Но упомянутые факты, касающиеся СПИДа, подсказали новые перспективы дос-тижения такого результата. Поиски объяснения различной естественной восприимчи-вости к HIV (ВИЧ) авторы статьи и другие исследователи начали еще в 1984 году - всего лишь через один год после открытия того, что именно этот вирус является причиной СПИДа, и через три года после того, как это заболевание вообще было впервые иденти-фицировано. Из экспериментов на животных возникло обоснованное предположение о том, что устойчивость к этому возбудителю обусловлена наличием особого варианта гена, участвующего в иммунной функции организма, т.к. по результатам
Первая задача исследователей заключалась в том, чтобы найти источники генов лю-дей, по-разному реагировавших на имевшие место контакты с HIV. Для этого были отоб-раны группы людей высокого риска HIV-инфицирования, в особенности гомосексуа-листы-мужчины, лица, вводящие наркотики внутривенно, больные гемофилией, получав-шие инфузии непроверенных продуктов крови. Образцы крови и тканей таких людей могли служить материалом для исследования генетического аппарата в разных по реакции на этот вирус группах. Но задача усложнялась тем, что в человеческих хромосомах содержится до 100 тысяч генов, и только малая часть из них была детально изучена ко времени начала этих исследований. Очевидно, что изучить все остальные многие десятки тысяч генов под интересующим углом зрения представлялось задачей, абсолютно невы-полнимой. Но было известно, что для проникновения в клетки, вирусы должны "узнать" и "привязаться" к определенным белкам на их поверхности, становящейся плацдармом для последующегого внедрения внутрь этих клеток. Далее ретровирусы вводят свои гены в хромосомы хозяина, из-за чего функции его клеток меняются таким образом, что они на-чинают воспроизводить вирусные частицы. Учет этого механизма позволил сузить "поле" исследования до, приблизительно, 50 генов, белки которых потенциально могут влиять на HIV. Кроме того, внимание было привлечено к 250 другим вариабельным участкам ДНК. Исследователи стали сравнивать, как часто каждый известный вариант гена или поли-морфный сегмент ДНК представлен в группах, по-разному реагировавших на контакт с HIV. Кроме того, сравнивали т.наз. генотипы. Дело в том, что каждый индивидуум насле-дует пары копий всех генов обоих родителей, за исключением тех, которые определяют пол - они различны. Пара генов определенного расположения в хромосоме может быть одинаковой (идентичной) гомозиготной. Если же пара состоит из различных вариантов этого же гена, это называется гетерозиготным вариантом генотипа.
Вначале собое внимание было обращено на процент лиц гомо- и гетерозиготных по некоторым вариантам генов в каждой группе. Отчетливые различия в частоте тех и дру-гих позволили произвести предварительный отбор генов, значимых для функции иммуни-тета. Эта работа потребовала годы упорных поисков. Было много надежд, но и разо-чарований немало после тщательных проверок. Только через более, чем 10 лет после начала этой работы (конец 1995 - начало 1996г.) появились реальные "ключи" к разгадке. Была установлена роль определенного белка (CD-4) на поверхности Т-лимфоцитов и мак-рофагов в развитии взаимодействия вируса с этими клетками. Эти молекулы CD-4 в присутствии вируса HIV претерпевают изменения, в результате которых теряется ряд их важных свойств. Но появились основания для предположения о существовании еще од-ного белка, к которому HIV могут "привязываться". Другим важным событием для решения этой проблемы явилось открытие того, что существует другой класс Т-лим-фоцитов, производящих иной белок (СD-8), действие которого блокирует возможность проникновения HIV в иммунные клетки. Постепенно было найдено три фактора, подав-ляющих способность проникновения вируса в макрофаги, и все они оказались известными укороченными цепями аминокислот, в обычном варианте ответственные за привлечение иммунных клеток к пораженным тканям. Усилиями многих групп исследователей из раз-ных стран был решен вопрос о других рецепторах HIV (CCR-5, CXCR-4), "привя-зывающих" его и становящихся плацдармом для дальнейшего проникновения в клетки. В конечном итоге был раскрыт механизм привлечения и закрепления вируса. Дальнейшие искания выявили наличие укороченного варианта CCR-5, содержащего на 32 нуклеотида меньше нормального. Оказалось, что в группе не инфицированных были лица, гомозигот-ные по укороченному мутанту CCR-5. В отличие от этого, ни один из 1343 инфициро-ванных пациентов не был гомозиготен по этому признаку. Проверки подтвердили, что именно это отличие предопределяет защиту от заражения HIV. К этому выводу пришли почти одновременно несколько групп исследователей, работавших независимо друг от друга. Но дальнейшие исследования показали, что этот механизм защиты действует толь-ко у 20 процентов не инфицированных. В остальных 80 процентах сопротивляемость ин-фекции определялась другими - генетическими или не-генетическими факторами. Выяс-нилось также, что лица, гетерозиготные по этому признаку, обладают частичной защитой: у них не наблюдается бурного развития заболевания.
Думается, из приведенных сведений читатель уже может получить представление о чрезвычайной сложности проделанной роботы, и это позволит изложить последущие раз-делы этой главы более кратко. Возможно, наш пересказ кому-то покажется слишком затя-нутым и подробным. Не исключено, что кого-то, наоборот, не удовлетворит отсутствие некоторых подробностей. Наконец, специалисты найдут, вероятно, немало "шерохо-ватостей" и даже неточности в нем. Мы заранее соглашаемся со справедливостью воз-можных замечаний. Но, повторим, изложение содержания серьезнейшей научной статьи преследовало ограниченную цель - по возможности отразить новые направления развития медицинской науки. Наиболее важным представлялось показать сложность и глубину про-никновения ученых в механизм "тщательнейшим образом запрятанных" функций орга-низма человека, каким является иммунная реакция его. Уже не клетка стала конечным объектом изучения. Постепенно было более полно раскрыто ее строение: сначала цито-плазма, ядро и органеллы, затем строение ядра, в частности - это важно в данном кон-тексте - были обнаружены хромосомы и установлена их роль в передаче наследственной информации. Затем было установлено строение ДНК. В настоящее время объектом изу-чения и даже воздействия в желаемых целях стали уже не только мельчайшие участки этой огромной молекулы, отдельные гены, но и их разновидности (варианты) и даже осо-бенности белков, которые тот или иной ген и разные его варианты производят. Таким об-разом, ученые достигли другого "базового уровня", на котором определяется многое (но, разумеется, далеко не все) в жизнедеятельности организма, в частности, такая жизненно-важная функция, как иммунитет. Действительно, если известно, какая разновидность гена предопределяет восприимчивость к той или иной инфекции, а какая подавляет ее, соот-ветствующие изменения генома человека могут решить многие проблемы. Задачу эту, разумеется, не следует упрощать, она чрезвычайно сложна. Но приведенные данные о сос-тоянии и возможностях современной генетики и генной инженерии принципиально неосу-ществимой считать ее тоже не дают оснований.
Далее, если один белок на поверхности клетки "привлекает" и прикрепляет к себе ин-фекционное начало, а другой (или другая разновидность того же белка) препятствует это-му, создаются другие, хоть и труднодостижимые и чрезвычайно сложные, но реальные пути и возможности для воздействия в желаемом направлении на иммунные способности организма. Таким образом обозначились возможности препятствовать развитию СПИДа не воздействием "волшебной пулей" на возбудителя, а созданием преграды сотрудничест-ву вируса с "белком-привратником", допускающим или не допускающим его в клетку. Наиболее реалистичным выглядело нахождене способа "перекрыть" места соединения вируса с белком на поверхности клеток. Если, например, "заткнуть" эти места другими молекулами, возможность прикрепления первого ко второму будет исключена. Перс-пективным также выглядит вакцинация людей фрагментами белка CCR-5, которые могут вызвать образование иммунной системой организма собственных антител, связывающих этот белок. Возможным представляется также использование генной инженерии, чтобы снабдить макрофаги новыми генами, чьи производные блокировали бы производство CCR-5. Изучаются и другие возможности - не только предупреждения, но и лечения да-леко зашедших заболеваний. Установлено также, что отдельные индивидуумы, гомози-готные по мутантному гену, были, тем не менее, инфицированы HIV. Это вынуждает считаться с возможностью существования особо вырулентной линии этого возбудителя. Что-ж, ничего необычного в этом нет, то же наблюдается и у возбудителей других забо-леваний. Как и во многих других случаях, по мере решения одной проблемы в медицине, возникают другие. Но исторический опыт безусловно доказывает, что постепенно и они разрешаются и, видимо, вновь выявленные проблемы, связанные со СПИДом, тоже будут разрешены в будущем. На указанных направлениях поисков, указывают авторы статьи, уже достигнуты практически значимые результаты. Так, идентифицирован вариант одного из генов - CCR2B, заметно замедляющий развитие болезни. Авторы отмечают ускоряю-щийся темп открытий в изучаемой ими области и выражают надежду на то, что "обоб-щенные таланты исследователей разных направлений предоставят способ повернуть вспять прогрессирование эпидемии СПИДа".
Не менее впечатляющи перспективы решения с помощью генетики не только вновь возникающих, но и давно не поддающихся решению проблем, таких, как онкологические, например. И читая в одном из номеров "Times" о том, что "Можно поверить, что борьба против рака достигла поворотного пункта", это не вызывает особых сомнений. Еще памят-ны времена, когда злокачественному росту давали такое, приблизительно, объяснение: "Злокачественные опухоли развиваются потому, что некоторые клетки (по каким-то неиз-вестным причинам) приобретают свойство бесконтрольного деления". За последние два десятилетия приоткрыты многие "тайны" злокачественного роста. Благодаря этому созда-ются реальные перспективы "приручения" и "изменения поведения" опухолей в желаемом направлении; разработки принципиально новых, не травматичных и менее тягостных для пациентов методов лечения. Так, найден энзим, содержащийся в раковых, но отсутству-ющий в здоровых клетках. Есть основания полагать, что если удастся найти пути подав-ления его активности, это может стать эффективным средством предотвращения злока-чественного роста. С 1960-х годов становилась все более ясной связь между онкогенезом (происхождением опухолей) и состоянием ДНК, осуществляющей, наряду с многими дру-гими функциями, руководство упорядоченным клеточным делением. Постепенно были обнаружены прямые доказательства того, что клетки становятся злокачественными после наступления определенных изменений их генного аппарата, возникающих под влиянием разных - физических, химических и прочих - канцерогенных - факторов. К настоящему времени обнаружено более ста генов, мутации которых обусловливают злокачественное, неупорядоченное деление клеток. Но, к счастью, существуют также гены, способные подавлять этот процесс. Усилиями многих исследователей удалось изучить генный меха-низм этого - первостепенной важности - явления как в нормальном, так и в патологи-ческом варианте его осуществления: как в физиологических условиях жизнедеятельности живого организма, так и при нарушении этих условий, приводящем к злокачественному росту. Т.е., изучен генный механизм, регулирующий процесс деления клеток, постоянно протекающий в тканях здоровых живых организмов. Установлено, что в опухолевых клетках отсутствуют копии генов, осуществляющих как-бы функции "выключателей", прерывающих это деление, когда это необходимо. Таково, в самых общих чертах, одно из современных направлений, открывающее невиданные перспективы для разработки прин-ципиально новых, не связанных с тяжелыми, порой калечащими хирургическими опера-циями или с небезразличными для организма химиотерапией или облучением, возмож-ности борьбы со злокачественными опухолями; предотвращения самой возможности их возникновения.
Но есть и другое перспективное направление, открываемое успехами медицинской ге-нетики. Изучен генетический механизм образования новых, дополнительных кровеносных сосудов, действующий в нормальных, физиологических условиях (при росте организма, например). Но этот же процесс - необходимое условие и для роста новообразований: без дополнительного кровоснабжения (питания) рост опухоли уже на самых ранних этапах развития становится невозможным. Изучен генный механизм этого процесса - как стиму-лирующих его факторов, так и препятствующих ему. Очевидно, что целенаправленное ис-пользование последнего может приостановить как рост опухоли, когда она еще не имеет каких-либо клинических проявлений, так и воспрепятствовать развитию ее основных при-знаков злокачественности способности как инфильтрирующего роста (прорастания в окружающие здоровые ткани), так и метастазирования. Чрезвычайно интересным и знаме-нательным, подтверждающим "зрелость" этого направления поисков, представляется то, что к достижению этого же эффекта, но другим способом, направлено замечательное от-крытие и доктора Иуды (Джуды) Фолкмана. О диапазоне поисков новых путей борьбы со злокачественными новоообразованиями можно судить по названиям серии солидных ста-тей, опубликованных в сентябрьском номере журнала "Scientific American" (1996 г.): "Иммунотерапия рака", "Новые молекулярные цели воздействия на раковые опухоли" и "Сражение с злокачественными опухолями путем воздействия на их кровоснабжение". При прочтении этих и многих других сообщений о проводимых исследованиях нельзя не согласиться со следующим утверждением, предпосланным указанным публикациям в этом же журнале: "Вдохновляющие новые подходы к лечению обещают победы над раком без разрушающих побочных эффектов многих ныне применяемых методов лечения".
Сегодня можно уже говорить о первых положительных результатах этих поисков, имеющих практическое значение в лечении больных. Так, "The Wall Street Journal" от 18 мая 1998 года опубликовал статью "A New Drug Flags Advances in Cancer Drugs", сооб-щающую о том, что с помощью генной инженерии создан препарат Herceptin, оказываю-щий заметный терапевтический эффект даже при наиболее тяжелом - метастазирующем - раке грудной железы, не вызывая тяжелых побочных явлений, сопровождающих химио- и радиотерапию.
Многим ныне живущим еще памятно впечатление о первом сообщении об успешной пересадке сердца. Сейчас трансплатология - не без помощи иммунологии и фармакохимии - превратилась в успешно работающий самостоятельный раздел клинической медицины. В наше время, как известно, успешно пересаживаются не только одна почка или сердце, но и легкие, и печень, и другие органы - даже в различных комбинациях одному и тому же пациенту. Широко используются и искусственные заменители клапанов сердца, суставов, хрусталиков глаза. Сейчас трагедия - гибель одного человека позволяет иногда сохра-нить жизнь нескольким другим безнадежно больным людям. Но недостаток донорских органов ограничивает реальные масштабы практического использования имеющихся возможностей. Дальнейший прогресс и в этом деле связан с достижениями медицинской генетики, с уже наметившейся возможностью выращивания тканей и даже органов.