Чтение онлайн

на главную

Жанры

Нобелевские премии. Ученые и открытия
Шрифт:

Развитие нейрохирургии привело к интересному открытию, пролившему свет на работу обоих полушарий головного мозга. В 60-е годы в целях борьбы с эпилепсией стали перерезать мозолистое тело — пучок нервных волокон, связывающих полушария головного мозга. После такой операции больные на первый взгляд не отличались от здоровых людей. Но профессор психологии Калифорнийского технологического института Роджер Сперри высказал предположение, что эта процедура далеко не безобидна. Уже при первых своих наблюдениях в 1968 г. он заметил, что у пациентов с «расщепленным мозгом» в буквальном смысле левая рука не ведает, что делает правая.

Сперри предпринял обширную серию экспериментов, используя самые различные психологические тесты.

Его целью было исследовать, как реагируют оба полушария на воздействие света. У нормальных людей это трудно выяснить, но при лечении эпилепсии трудности отпадают. Сперри показал, что после рассечения мозолистого тела мозга процессы в каждом полушарии протекают независимо. Он доказал, что каждое полушарие мозга выполняет свои собственные функции: левое ответственно за речь, письмо и счет, правое — за восприятие пространственных взаимосвязей и интуитивное распознавание окружающих предметов. Поскольку нервные пути пересекаются, правое полушарие управляет левой половиной тела, а левое — правой. Поэтому, если оперированный человек касается левой рукой какого-либо предмета, то он его узнает, но не может назвать. Необходимо, чтобы, на помощь пришла правая рука — тогда информация от осязания преобразуется в левом полушарии в словесное описание. В дальнейшем Сперри выявил пластичность речевых функций, обнаружив, что у больных с рассеченным мозолистым телом (в особенности у молодых людей) со временем речевые функции правого полушария совершенствуются. В связи с этим Сперри высказал предположение, что взаимодействие между двумя полушариями обусловлено их различной «специализацией».

Оригинальные исследования Роджера Сперри показали, что нервный субстрат сознания образуют именно большие полушария головного мозга и связи между ними. Будучи развитыми у человека в наибольшей степени, они полностью доминируют над более примитивными структурами, унаследованными эволюционным путем. За свои замечательные открытия в области функциональной специализации полушарий мозга Роджер Сперри был удостоен в 1981 г. Нобелевской премии по физиологии и медицине. Эту почетную награду разделили с ним американский ученый Дэвид Хьюбел и шведский исследователь Торстен Визел за открытия в области обработки информации в зрительной системе.

Исследование органов чувств

Мозг, как и любая ЭВМ, нуждается в источниках информации. Его информационными каналами служат органы чувств — настоящие окна в мир, которые улавливают свет, звуки, а также многие другие сигналы окружающей среды и кодируют их в нервные импульсы, идущие в мозг.

Важнейшим органом чувств является зрение. Более 90 процентов информации об окружающем мире человек получает с помощью глаз. Теория зрения была разработана военным врачом Германом Гельмгольцем, который затем от медицины перешел к физике, став одним из известнейших естествоиспытателей XIX в.

В 1853 г. Гельмгольц объяснил, как происходит аккомодация — фокусировка глаза на близких и далеких предметах. Под роговицей глаза находится хрусталик, главная функция которого как раз и заключается в фокусировке изображения на глазное дно, покрытое светочувствительной сетчаткой. Хрусталик заключен в специальную капсулу и поддерживается нитями, которые изменяют его кривизну. При сокращении определенных мышц нити расслабляются и хрусталик благодаря своей эластичности становится более выпуклым, что увеличивает его преломляющую способность и уменьшает фокусное расстояние. Так глаз фокусируется на близких предметах.

Теория Гельмгольца была принята ученым миром с удовлетворением, и никто не ожидал, что в нее можно что-либо добавить, пока за изучение глаза не взялся другой врач, который также отдавал предпочтение физике. В 1890 г. молодой исследователь из Стокгольма Альвар Гульстранд публикует свою докторскую диссертацию по теории астигматизма (один из дефектов зрительного восприятия, который

устраняется с помощью очков с цилиндрическими стеклами). В последующие два десятилетия Гульстранд все глубже проникал в оптику, расширяя свои знания, пока наконец не стал одним из крупнейших специалистов в этой области.

Гульстранд поставил перед собой исключительно трудную задачу — детально изучить оптическую систему глаза. Прежде всего он установил, что изменение кривизны глазного хрусталика только на две трети обеспечивает увеличение преломляющей способности, необходимой для точной фокусировки. Таким образом, выяснилось, что теория Гельмгольца охватывает не все явления. Шведский офтальмолог, ставший профессором Упсальского университета, обратил внимание на особое микростроение глазного хрусталика: он состоит из большого количества прозрачных нитей. Обнаружилось, что при аккомодации наряду с изменением кривизны оптической поверхности хрусталика происходит и перемещение нитей, в результате чего изменяется показатель преломления, — это и дает дополнительное увеличение преломляющей способности хрусталика. Все эти выводы стали возможны благодаря многочисленным тончайшим экспериментам и сложной теоретической обработке данных. Открытие новых фактов в области, где на протяжении более полувека все выглядело незыблемым, явилось большой неожиданностью для научных кругов. В 1911 г. Альвар Гульстранд был удостоен Нобелевской премии по физиологии и медицине за работы по диоптрике глаза, в частности за исследование астигматизма и аккомодации.

В 1865 г. Фритьоф Холмгрен из Упсальского университета впервые записал электроретинограмму. Он установил, что при освещении глаза в его сетчатке (ретине) возникают электрические импульсы. В 20-е годы нашего века в результате работ Эдгара Эдриана и Юнгве Зотермана стало возможным исследовать отдельные сенсорные клетки и их электрические сигналы. Примерно в то же время молодой шведский исследователь Рагнар Гранит, родившийся в Финляндии, специализировался по электрофизиологии у Шеррингтона. Для исследования глазной сетчатки, служащей приемником светового излучения, он использовал самые совершенные методы того времени. Анализируя электроретинограммы, он показал существование зрения двух типов. Один реализуется в полумраке, когда действуют преимущественно те клетки сетчатки, которые называются палочками. При сильном освещении вступают в действие и так называемые колбочки — клетки другого типа, чувствительные к цветам.

Гранит предположил, что в клетках сетчатки имеются специальные вещества, реагирующие на яркость света. Он назвал эти вещества доминаторами, в отличие от других субстанций — модуляторов, которые, по его мнению, воспринимают соответственно красный, зеленый и синий цвета и находятся в специализированных клетках, обеспечивающих цветовое зрение, — колбочках. Палочки обладают высокой чувствительностью к свету, реагируя даже на единичные фотоны, но не воспринимают цвета. Это делают колбочки, имеющие, однако, более низкую чувствительность к свету. Не случайно старая пословица говорит: «Ночью все кошки серые».

В период первой мировой войны в Дании было установлено, что один из видов нарушения зрения, так называемая «куриная слепота», связан с недостатком витамина А. В начале 30-х годов молодой зоолог из Колумбийского университета Джордж Уолд (Георг Вальд), находясь в командировке в Европе и работая в лаборатории Отто Генриха Варбурга, установил, что в сетчатке глаза содержится витамин А. Пока в Далеме (Берлин) проводились эксперименты, из Цюриха пришла весть, что Пауль Каррер и его сотрудники определили структуру этого витамина. Уолд сразу же выехал в Швейцарию, чтобы ознакомиться с новейшими результатами. После этого он продолжил свои исследования у Отто Мейергофа в Гейдельбергском университете. Там Уолд показал, что зрительный пигмент родопсин состоит из ретинена (вещества, близкого по структуре витамину А) и белка опсина.

Поделиться:
Популярные книги

Ученичество. Книга 2

Понарошку Евгений
2. Государственный маг
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Ученичество. Книга 2

Император поневоле

Распопов Дмитрий Викторович
6. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Император поневоле

Лорд Системы 7

Токсик Саша
7. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 7

Целитель. Книга вторая

Первухин Андрей Евгеньевич
2. Целитель
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Целитель. Книга вторая

Темный Патриарх Светлого Рода 3

Лисицин Евгений
3. Темный Патриарх Светлого Рода
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Темный Патриарх Светлого Рода 3

Случайная свадьба (+ Бонус)

Тоцка Тала
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Случайная свадьба (+ Бонус)

Прометей: каменный век II

Рави Ивар
2. Прометей
Фантастика:
альтернативная история
7.40
рейтинг книги
Прометей: каменный век II

Жребий некроманта. Надежда рода

Решетов Евгений Валерьевич
1. Жребий некроманта
Фантастика:
фэнтези
попаданцы
6.50
рейтинг книги
Жребий некроманта. Надежда рода

Возвышение Меркурия

Кронос Александр
1. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия

Не грози Дубровскому! Том Х

Панарин Антон
10. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том Х

Идеальный мир для Лекаря 12

Сапфир Олег
12. Лекарь
Фантастика:
боевая фантастика
юмористическая фантастика
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 12

Хочу тебя навсегда

Джокер Ольга
2. Люби меня
Любовные романы:
современные любовные романы
5.25
рейтинг книги
Хочу тебя навсегда

СД. Том 15

Клеванский Кирилл Сергеевич
15. Сердце дракона
Фантастика:
героическая фантастика
боевая фантастика
6.14
рейтинг книги
СД. Том 15

Смерть может танцевать 3

Вальтер Макс
3. Безликий
Фантастика:
боевая фантастика
5.40
рейтинг книги
Смерть может танцевать 3