Чтение онлайн

на главную

Жанры

Новая наука о жизни
Шрифт:

Такая альтернатива пифагорейскому мистицизму была предложена в современных немеханистических теориях морфогенеза. В системе Дриша, которая явно опиралась на систему Аристотеля, специфические формы живых организмов возникают в результате действия неэнергетического фактора, энтелехии. Морфогенетические поля и хреоды органицистов играют подобную же роль в направлении морфогенетических процессов к созданию специфических конечных форм. Но природа этих полей и хреод до сих пор оставалась неясной.

Эта неясность может быть отчасти обусловлена платоновской тенденцией большей части организмической мысли, [93] наиболее отчетливо представленной в философской системе Уайтхеда. Уайтхед постулировал, что все подлинные события включают то, что он назвал Вечными Объектами; последние в совокупности образуют сферу возможности и включают все возможные

формы; действительно, они сильно напоминают платоновские Формы. [94] Но, очевидно, метафизическое понятие метафизических полей как аспектов платоновских Форм, или Вечных Объектов, не особенно ценно для экспериментальной науки. Только если они рассматриваются как физические сущности, которые производят физические эффекты, они могут помочь прийти к научному пониманию морфогенеза.

93

Многочисленные примеры сочетания аспектов организмической философии с явно неоплатоническими рассуждениями содержатся у Райера (Ruyer, 1974)) в его сообщении о малых неогностических группах в США, среди членов которых было много выдающихся ученых.

94

Emmett (1966).

Организмическая философия включает как биологию, так и физику; следовательно, если принимается, что морфогенетические поля играют причинную роль в биологическом морфогенезе, они также должны играть причинную роль в морфогенезе более простых систем, таких как кристаллы и молекулы. Такие поля не признаются в существующих физических теориях. Поэтому важно исследовать вопрос о том, в какой степени эти теории способны объяснить морфогенез чисто химических систем. Если они могут обеспечить адекватное объяснение, тогда идея морфогенетических полей не представляет интереса; но если не могут, тогда открыт путь для новой гипотезы причинности формы через морфогенетические поля, как в биологических, так и в небиологических системах.

3.2. Форма и энергия

В ньютоновской физике вся причинность рассматривалась на языке энергий, с позиций принципа движения и изменения.

Все движущиеся вещи имеют энергию — кинетическую энергию движущихся тел, тепловые колебания и электромагнитное излучение, — и эта энергия может вызывать движение других тел. Покоящиеся вещи также могут обладать энергией, а именно потенциальной энергией, обусловленной их стремлением к движению; они покоятся лишь потому, что их удерживают силы, противостоящие этому стремлению.

Предполагалось, что гравитационное притяжение зависит от силы, которая действует на расстоянии, вызывая движение тел или сообщая им стремление к движению, или потенциальную энергию. Однако причина существования самой этой силы притяжения оставалась неизвестной. В противоположность этому сейчас гравитационные и электромагнитные явления объясняются на языке полей. В то время как ньютоновские силы мыслились как возникающие каким-то неизвестным образом из материальных тел и распространяющиеся из них в пространстве, в современной физике первичными считаются поля: они лежат в основании как материальных тел, так и пространства между ними.

Картина усложняется тем, что имеются поля различных типов. Во-первых, гравитационное поле, которое в общей теории относительности Эйнштейна приравнивается к пространству-времени, и считается, что оно искривляется в присутствии вещества. Вовторых, электромагнитное поле, в котором локализованы электрические заряды и через которое электромагнитные излучения распространяются как вибрационные возмущения. Согласно квантовой теории, эти возмущения есть подобные частицам фотоны, связанные с дискретными квантами энергии. В-третьих, в квантовой теории поля вещества субатомные частицы рассматриваются как кванты возбуждения материальных полей. Каждый сорт частиц имеет свой особый вид поля: протон — это квант протон-антипротонного поля, электрон — квант электрон-позитронного поля и так далее.

В этих теориях физические явления объясняются с помощью комбинации концепций пространственных полей и энергии, а не только на языке энергий. Таким образом, хотя энергия может считаться причиной изменения, порядок изменения зависит от пространственной структуры полей. Эти структуры производят физические эффекты, но они сами по себе не являются видами энергии; они действуют как «геометрические», или пространственные, причины. Принципиальное различие между этой идеей и представлением об исключительно энергетической причинности иллюстрируется контрастом между теориями гравитации Ньютона и Эйнштейна: например, согласно первой теории, Луна движется вокруг Земли, потому что притягивается к ней силой притяжения; согласно второй — Луна делает это, поскольку искривлено само пространство, в котором она движется.

Рис. 6. Диаграмма, представляющая нестабильное (А), стабильное (В) и отчасти стабильное (С) состояния

Современное понимание структуры химических систем зависит от представлений квантовой механики и электромагнетизма; гравитационные эффекты незначительны, и ими можно пренебречь. Возможные способы соединения атомов друг с другом даются известным из квантовой механики уравнением Шредингера, которое позволяет рассчитывать орбитали электронов на языке вероятностей; в квантовой теории поля вещества эти орбитали могут рассматриваться как структуры в электрон-позитронном поле. Но поскольку электроны и ядра атомов несут электрический заряд, они также связаны с пространственными структурами электромагнитных полей и, следовательно, с потенциальными энергиями. Не все возможные пространственные сочетания данного числа атомов имеют одинаковую потенциальную энергию, и только сочетание с наименьшей потенциальной энергией будет стабильно по причинам, указанным на рис. 6. Если система находится в состоянии с энергией большей, чем в возможных альтернативных состояниях, любое малое смещение (например, из-за теплового возбуждения) приведет к ее переходу в другое состояние (А). Если, с другой стороны, она находится в состоянии с энергией меньшей, чем в возможных альтернативных состояниях, после небольшого смещения она вернется в это исходное состояние, которое будет стабильным (В). Система может также временно находиться в состоянии, которое не является наиболее стабильным до тех пор, пока она не сдвинута выше «порогового» уровня (С); когда это случается, она переходит в более стабильное состояние с меньшей энергией.

Эти энергетические соображения определяют, какое состояние химической структуры является наиболее стабильным, но они не объясняют пространственные характеристики этого состояния; эти характеристики представлены на рис. 6 как линии, по которым катится шарик и которые действуют как барьеры, ограничивающие его движение. Эти барьеры зависят от пространственных структур, образуемых полями вещества и электромагнетизма.

Согласно второму закону термодинамики, спонтанные процессы в закрытой системе стремятся к состоянию равновесия; когда это происходит, изначальные различия в температуре, давлении и т. д. между различными частями системы стремятся к нулю. На техническом языке энтропия изолированной макроскопической системы либо остается постоянной, либо возрастает.

Значение этого закона в популярных изложениях часто преувеличивается; в частности, термин «энтропия» употребляется как синоним «беспорядка». Тогда возрастание сложности организации, происходящее в процессе эволюции и развития живых организмов, оказывается противоречащим принципу возрастания энтропии. Это затруднение возникает из-за непонимания границ применения науки термодинамики. Во-первых, он применим только к закрытым системам, тогда как живые организмы — это открытые системы, обменивающиеся с окружающей средой веществом и энергией. Во-вторых, он имеет дело только с внутренними отношениями между теплом и другими формами энергии: он применим к энергетическим факторам, которые влияют на химические и биологические структуры, но не объясняет возникновения этих структур. И в-третьих, техническое определение энтропии слабо связано с каким-либо нетехническим понятием беспорядка; в частности, оно не имеет отношения к порядку того типа, который существует в химических и биологических системах. Согласно третьему закону термодинамики, при абсолютном нуле температуры энтропии всех чистых твердых кристаллических веществ равны нулю. С термодинамической точки зрения они совершенно упорядочены, поскольку в этом случае нет беспорядка, обусловленного тепловым возбуждением. Но все они упорядочены одинаково: нет различия в энтропии между простым кристаллом соли и кристаллом чрезвычайно сложной органической макромолекулы, такой как гемоглобин. Это означает, что большая структурная сложность последней не может быть измерена с помощью энтропии.

Поделиться:
Популярные книги

Один на миллион. Трилогия

Земляной Андрей Борисович
Один на миллион
Фантастика:
боевая фантастика
8.95
рейтинг книги
Один на миллион. Трилогия

Жестокая свадьба

Тоцка Тала
Любовные романы:
современные любовные романы
4.87
рейтинг книги
Жестокая свадьба

Попаданка в деле, или Ваш любимый доктор - 2

Марей Соня
2. Попаданка в деле, или Ваш любимый доктор
Любовные романы:
любовно-фантастические романы
7.43
рейтинг книги
Попаданка в деле, или Ваш любимый доктор - 2

Холодный ветер перемен

Иванов Дмитрий
7. Девяностые
Фантастика:
попаданцы
альтернативная история
6.80
рейтинг книги
Холодный ветер перемен

An ordinary sex life

Астердис
Любовные романы:
современные любовные романы
love action
5.00
рейтинг книги
An ordinary sex life

Случайная мама

Ручей Наталья
4. Случайный
Любовные романы:
современные любовные романы
6.78
рейтинг книги
Случайная мама

Эйгор. В потёмках

Кронос Александр
1. Эйгор
Фантастика:
боевая фантастика
7.00
рейтинг книги
Эйгор. В потёмках

Райнера: Сила души

Макушева Магда
3. Райнера
Любовные романы:
любовно-фантастические романы
7.50
рейтинг книги
Райнера: Сила души

Последняя Арена 4

Греков Сергей
4. Последняя Арена
Фантастика:
рпг
постапокалипсис
5.00
рейтинг книги
Последняя Арена 4

Золотая осень 1977

Арх Максим
3. Регрессор в СССР
Фантастика:
альтернативная история
7.36
рейтинг книги
Золотая осень 1977

Ты нас предал

Безрукова Елена
1. Измены. Кантемировы
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Ты нас предал

Кодекс Крови. Книга VIII

Борзых М.
8. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VIII

Попаданка в Измену или замуж за дракона

Жарова Анита
Любовные романы:
любовно-фантастические романы
6.25
рейтинг книги
Попаданка в Измену или замуж за дракона

Ваше Сиятельство 3

Моури Эрли
3. Ваше Сиятельство
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ваше Сиятельство 3