Новый ум короля: О компьютерах, мышлении и законах физики
Шрифт:
Концепция Тьюринга
Попробуем представить себе устройство, предназначенное для выполнения некоторой (конечноопределенной) вычислительной процедуры. Каким могло бы быть такое устройство в общем случае? Мы должны быть готовы к некоторой идеализации и не должны обращать внимания на практические аспекты — мы на самом деле рассматриваем математическую идеализацию «машины». Нам нужно устройство, способное принимать дискретное множество различных возможных состояний, число которых конечно(хотя и может быть очень большим). Мы назовем их внутреннимисостояниями устройства. Однако мы не хотим, чтобы объем выполняемых на этом устройстве вычислений был принципиально ограничен. Вспомним описанный выше алгоритм Евклида. В принципе, не существует предельной величины числа, после которой алгоритм перестает работать. Этот алгоритм, или некая общая вычислительная процедура, будет тем же самым независимо от того, сколь велики числа, к которым он применяется. Естественно, для очень больших чисел выполнение процедуры может занять много
Значит, несмотря на конечность числа внутренних состояний, наше устройство должно быть приспособлено для работы с входными данными неограниченного объема. Более того, устройство должно иметь возможность использовать внешнюю память неограниченного объема (наши «черновики») для хранения данных, необходимых для вычислений, а также уметь выдавать окончательное решение любого размера. Поскольку наше устройство имеет только конечное число различных внутренних состояний, мы не можем ожидать, что оно будет «хранить внутри себя» все внешние данные, равно как и результаты своих промежуточных вычислений. Напротив, оно должно обращаться только к тем данным и полученным результатам, с которыми оно работает непосредственно в настоящий момент, и уметь производить над ними требуемые (опять же, в данный момент) операции. Далее, устройство записывает результаты этих операций — возможно, в отведенной для этого внешней памяти — и переходит к следующему шагу. Именно неограниченные объемы входных данных, вычислений и окончательного результата говорят о том, что мы имеем дело с идеализированным математическим объектом, который не может быть реализован на практике (рис. 2.3).
Рис. 2.3. Точная машина Тьюринга требует бесконечной ленты!
Но подобная идеализация является очень важной. Чудеса современных компьютерных технологий позволяют создавать электронные устройства хранения информации, которые мы можем рассматривать как неограниченные в приложении к большинству практических задач.
На самом деле память устройства, которая выше была названа «внешней», можно рассматривать как внутренний компонент современного компьютера. Но это уже технические детали — рассматривать часть объема для хранения информации как внутреннюю или внешнюю по отношению к устройству. Однимиз способов проводить такое деление между «устройством» и «внешней» частью могло бы стать использование понятий аппаратного (hardware)и программного (software)обеспечения вычислений. В этой терминологии внутренняя часть могла бы соответствовать аппаратному обеспечению (hardware),тогда как внешняя — программному обеспечению (software).Я не буду жестко придерживаться именно этой классификации, однако, какую бы точку зрения мы не заняли, не вызывает сомнений, что идеализация Тьюринга достаточно точно аппроксимируется современными электронными компьютерами.
Тьюринг представлял внешние данные и объем для хранения информации в виде «ленты» с нанесенными на нее метками. Устройство по мере необходимости могло обращаться к этой ленте, «считывать» с нее информацию и перемещать ее вперед или назад в ходе выполнения операций. Помимо этого, устройство могло ставить новые метки на ленту и стирать с нее старые, что позволяло использовать одну и ту желенту и как внешнюю память (то есть «черновик»), и как источник входных данных. На самом деле, не стоило бы проводить явное различие между этими двумя понятиями, поскольку во многих операциях промежуточные результаты вычислений могут играть роль новых исходных данных. Вспомним, что при использовании алгоритма Евклида мы раз за разом замещали исходные числа ( Аи В) результатами, полученными на разных этапах вычислений. Сходным образом та же самая лента может быть использована и для вывода окончательного результата («ответа»). Лента будет двигаться через устройство туда-сюда до тех пор, пока выполняются вычисления. Когда, наконец, все вычисления закончены, устройство останавливается, и результат вычислений отображается на части ленты, лежащей по одну сторону от устройства. Для определенности будем считать, что ответ всегда записывается на части ленты, расположенной слева от устройства, а все исходные числовые данные и условия задачи — на части ленты, расположенной справа от него.
Меня всегда несколько смущало представление о конечном устройстве, которое двигает потенциально бесконечную ленту вперед и назад. Неважно, насколько легок материал ленты — сдвинуть бесконечнуюленту все-таки будет трудно! Вместо этого я предпочитаю представлять себе эту ленту как некое окружение, по которому может перемещаться наше конечное устройство. (Конечно же, в современных электронных устройствах ни «лента», ни само «устройство» не должны в обычном смысле физически «перемещаться», но представление о таком «движении» позволяет достичь известной наглядности.) При таком подходе устройство получает все входные данные из этого окружения, использует его в качестве «черновика» и, наконец, записывает в него конечный результат.
В представлении Тьюринга «лента» состоит из бесконечной в обоих направлениях линейной последовательности квадратов. Каждый квадрат либо пуст, либо помечен [41] . Использование помеченных и пустых квадратов означает, что мы допускаем разбиение нашего «окружения» (т. е. ленты) на части
41
На самом деле Тьюринг использовал более сложные записи на ленте, но это не имеет принципиального значения, поскольку такие записи всегда могут быть представлены в виде последовательностей меток (одного типа) и пробелов. Я и далее, когда это допустимо, буду довольно свободно обращаться с исходными определениями Тьюринга.
Нам нужно, чтобы устройство «считывало» информацию с ленты. Мы будем считать, что оно считывает по одномуквадрату за раз и смещается после этого ровно на одинквадрат влево или вправо. При этом мы не утрачиваем общности рассуждений: устройство, которое читает за один раз n квадратов или перемещается на k квадратов, легко моделируется устройством, указанным выше. Передвижение на k квадратов можно построить из к перемещений по одному квадрату, а считывание n квадратов за один прием сводится к запоминанию результатов n однократных считываний.
Что именно может делать такое устройство? Каким образом в самом общем случае могло бы функционировать устройство, названное нами «механическим»? Вспомним, что число внутренних состоянийнашего устройства должно быть конечным. Все, что нам надо иметь в виду помимо этого — это то, что поведение нашего устройства полностью определяется его внутренним состоянием и входными данными. Входные данные мы упростили до двух символов — « 0»и « 1». При заданном начальном состоянии и таких входных данных устройство должно работать совершенно определенным образом: оно переходит в новое состояние (или остается в прежнем), заменяет считанный символ 0 или 1 тем же или другим символом 1 или 0 , передвигается на один квадрат вправо или влево, и наконец, оно решает, продолжить вычисления или же закончить их и остановиться.
Чтобы явно определить операции, производимые нашим устройством, для начала пронумеруем его внутренние состояния, например: 0,1,2,3,4,5. Тогда действия нашего устройства, или машины Тьюринга, полностью определялись бы неким явным списком замен, например:
0 0– > 0 0R
0 1– > 13 1L
1 0– > 65 1R
1 1– > 1 0R
2 0– > 0 1R.STOP
2 1– > 66 1L
3 0– > 37 0R
• •
• •
• •
210 0– > 3 1L
• •
• •
• •
2581 -> 0 0R.STOP
2590 -> 97 1R
2591 -> 0 0R.STOP
Выделенная цифра слева от стрелки — это символ на ленте, который устройство в данный момент считывает. Оно заменяет этот символ выделенной цифрой в середине справа от стрелки. Rозначает, что устройство должно переместиться вдоль ленты на один квадрат вправо, a Lсоответствует такому же перемещению влево. (Если, в соответствии с исходным представлением Тьюринга, мы полагаем, что движется не устройство, а лента, то Rозначает перемещение лентына один квадрат влево, a L— вправо.) Слово STOPозначает, что вычисления завершены и устройство должно остановиться. Например, вторая инструкция 0 1– > 13 1Lговорит о том, что если устройство находится в начальном состоянии 0и считывает с ленты 1, то оно должно перейти в состояние 13, оставить на ленте тот же символ 1и переместиться по ленте на один квадрат влево. Последняя же инструкция 259 1– > 0 0R.STOP говорит о том, что если устройство находится в состоянии 259и считывает с ленты 1, то оно должно вернуться в состояние 0, стереть с ленты 1, т. е. записать в текущий квадрат 0, переместиться по ленте на один квадрат вправо и прекратить вычисления.