Новый ум короля: О компьютерах, мышлении и законах физики
Шрифт:
И, что более важно, все свойства ума — мышление, способность чувствовать, интеллект, понимание, сознание — должны рассматриваться, согласно этому подходу, просто как разные аспекты сложной деятельности; иными словами, они есть не более, чем свойства алгоритма, выполняемого мозгом. Достоинства любого конкретного алгоритма заключаются в его «технических характеристиках», таких как точность результатов, область применимости, экономичность и скорость выполнения. Алгоритм, нацеленный на подражание тому, что, как предполагается, действует в мозге человека, должен быть невообразимо сложным. Но если такой алгоритм для мозга существует — а это как раз то, что с уверенностью утверждают поборники идеи сильного ИИ, — то он в принципе мог бы быть запущен на компьютере. В сущности, он мог бы выполняться на любом современном компьютере общего назначения, если бы не имеющиеся ограничения по скорости и пространству для хранения данных. (Обоснование этого замечания будет дано позднее, когда мы перейдем к рассмотрению универсальной машины Тьюринга.) Предполагается, что такие ограничения будут сняты с появлением в недалеком будущем мощных быстродействующих машин. Тогда такой алгоритм, если он будет открыт, мог бы, вероятно, пройти тест Тьюринга. И как только он будет запущен, считают сторонники сильного ИИ, он будет сам по себе испытывать
Далеко не каждый согласится с тем, что разумные состояния и алгоритмы можно считать идентичными в указанном контексте. Наиболее остро критиковал эту точку зрения американский философ Джон Серл [1980, 1987]. Он приводил в пример ситуации, когда должным образом запрограммированный компьютер проходил упрощенную версию теста Тьюринга, и все же — он подкрепляет эти выводы очень сильными аргументами — «понимание» как свойство интеллекта полностью отсутствовало. Один из таких примеров базируется на компьютерной программе, разработанной Роджером Шенком (Шенк, Абельсон [1977]). Задачей программы была имитация понимания простых историй типа: «Мужчина вошел в ресторан и заказал гамбургер. Когда гамбургер принесли, оказалось, что он сильно подгорел, и рассерженный мужчина выскочил из ресторана, не заплатив по счету и не оставив чаевых». В качестве второго примера можно взять другую историю: «Мужчина вошел в ресторан и заказал гамбургер. Когда его принесли, мужчина остался им очень доволен. И, покидая ресторан, он дал официанту щедрые чаевые перед тем, как заплатить по счету». Чтобы проверить «понимание» этих историй компьютером, его «попросили» определить, съел ли мужчина гамбургер в каждом отдельном случае (факт, который не был упомянут в тексте явным образом). На этот простой вопрос к таким простым историям компьютер может дать ответ, совершенно неотличимый от того, что дал бы англоговорящий человек, а именно: «нет» в первом случае и «да» — во втором. Так что в этом, оченьузком, смысле машина уже прошла тест Тьюринга!
Вопрос, к которому мы должны далее обратиться, будет таким: действительно ли подобный положительный результат указывает на истинное понимание, демонстрируемое компьютером — или, возможно, заложенной в него программы? Как аргумент в пользу отрицательного ответа на этот вопрос, Серл предлагает свою концепцию «китайской комнаты». Он сразу же оговаривает, что истории должны рассказываться на китайском, а не на английском языке — совершенно несущественная замена — и что все команды для компьютерного алгоритма в этом конкретном случае должны быть представлены набором (английских) инструкций для работы со счетами, на которые нанесены китайские символы. Проводя мысленный эксперимент, Серл представлял, что он самвыполняет все манипуляции внутри запертой комнаты. Последовательность символов, описывающая истории, и вопросы к ним подаются в комнату через небольшие прорези. Никакой другой информации извне не допускается. В конце, когда все действия выполнены, последовательность, содержащая ответ, выдается из той же прорези наружу. Поскольку все эти операции есть не что иное, как составляющие процедуры выполнения алгоритма по программе Шенка, то эта последовательность должна содержать просто китайские символы, означающие «да» или «нет» и дающие корректный ответ на вопрос, который — как, собственно, и сама история — был изложен по-китайски. При этом Серл недвусмысленно дает понять, что он не знает ни слова по-китайски, и посему не имеет ни малейшего представления о содержании рассказанных историй. Тем не менее, выполнив ряд действий, составляющих алгоритм Шенка (инструкции к которому были даны ему на английском языке), он справился бы с задачей не хуже китайца, способного без труда понять эти истории. Довод Серла — и весьма сильный, по моему мнению, — заключается в том, что простое выполнение подходящего алгоритма еще не говорито понимании. (Воображаемый) Серл, запертый в китайской комнате, не понимает ни на йоту, о чем идет речь в этих историях!
Против доказательства Серла был выдвинут ряд возражений. Я изложу здесь только те из них, которые — на мой взгляд — имеют серьезное значение. Прежде всего, фраза «не знает ни слова», если рассматривать ее в вышеприведенном контексте, является не вполне корректной. Понимание относится не только к отдельным словам, но и к определенным шаблонам. И при выполнении подобных алгоритмов можно в достаточной степени разобраться в структурах, которые составлены из символов, значение каждого из которых в отдельности останется непонятным. Например, китайский иероглиф, соответствующий «гамбургеру» (если он вообще существует), можно заменить на название какого-нибудь другого блюда, допустим, «чоу мейн» [33] ), существенно не изменив при этом содержание истории. Однако, мне все-таки кажется, что настоящий смысл историй (даже если считать такие подстановки незначительными) едва ли «дойдет» до того, кто будет просто скрупулезно выполнять шаг за шагом подобные алгоритмы.
33
Чоу мейн (англ. chow meiri) — распространенное китайское блюдо на основе жареной лапши. — Прим. ред.
Во-вторых, нужно всегда помнить о том, что выполнение даже сравнительно простой компьютерной программы оказывается в большинстве случаев длительным и трудным процессом, если за него берется человек, манипулирующий символами. (В конце концов, именно по этой причине мы доверяем такие действия компьютерам!) Если бы Серл в самом деле выполнял указанным выше способом алгоритм Шенка, то ему для ответа на совсем простой вопрос понадобились бы дни, месяцы, а то и годы изнурительно однообразной работы — не слишком правдоподобное занятие для философа! Однако, это не представляется мне таким уж серьезным возражением, поскольку здесь мы рассматриваем вопрос в принципеи не касаемся технических деталей. Больше затруднений вызывает предположение о наличии компьютерной программы, способной сравниться с человеческим мозгом и, тем самым, безупречно пройти тест Тьюринга. Любая подобная программа должна быть невероятно сложной. Нетрудно вообразить, что действие такой программы, необходимое для нахождения ответа даже на сравнительно простой вопрос теста Тьюринга, состояло бы из столь большого количества шагов, что ни для одного человеческого существа выполнение соответствующего алгоритма за период, равный средней продолжительности жизни, было бы невозможным. Так ли это на самом деле — трудно сказать, не имея подобной программы в своем распоряжении [34] . Но, в любом случае, вопрос о чрезвычайной сложности (программы), по-моему, игнорировать нельзя. Понятно, что мы говорим о принципиальной стороне дела; и все же мне не кажется таким уж невероятным существование некоторой «критической» степени сложности алгоритма, которой необходимо достигнуть, чтобы алгоритм начал обладать качествами разума. Возможно, это критическое значение так велико, что ни один алгоритм, имеющий столь сложную структуру, не может быть выполнен вручную ни одним человеческим существом, как то предлагает Серл.
34
Дуглас
Сам Серл в качестве контраргумента к последнему возражению предлагает заменить фигурирующего ранее «жильца» (самого себя) китайской комнаты — целой командой не понимающих китайский язык манипуляторов символами. Чтобы сделать это число достаточно большим, он даже допускает возможность замены своей комнаты всей Индией, где все население (кроме понимающих китайский!) будет производить действия над символами. Хотя с практической точки зрения это было бы безумием, принципиально это далеко не абсурдная модель, которая не вносит существенных изменений в первоначальные выводы: те, кто манипулирует символами, по-прежнему не понимают содержание историй, вопреки утверждениям сторонников сильного ИИо том, что простое выполнение подходящего алгоритма вызвало бы возникновение присущего интеллекту свойства «понимания». Однако, теперь это возражение оттесняется на задний план другим, кажущимся серьезнее: что, если эти индийцы более похожи на отдельные нейроны в человеческом мозгу, чем на этот мозг в целом? Никто никогда не будет ожидать от нейронов, чье возбуждение, по-видимому, является центральным механизмом умственной деятельности, чтобы они сами понимали, о чем думает их «хозяин» — так почему же индийцы должны понимать китайские истории? Серл парирует это возражение, указывая на явную абсурдность представления об Индии как реальной стране, понимающей некую историю, в то время как все ее население не имеет о ней ни малейшего понятия. Страна, говорит он, как и термостат или автомобиль, не «занимается» пониманием — это прерогатива индивидуумов, проживающих на ее территории.
Этот аргумент выглядит значительно слабее предыдущего. Я думаю, что доказательство Серла наиболее убедительно в случае одного исполнителя алгоритма, где мы должны ограничиться алгоритмом, чья степень сложности допускает его выполнение за время, не превышающее нормальную продолжительность человеческой жизни. Я нерассматриваю этот аргумент как непреложноесвидетельство того, что не существует никакого бестелесного «понимания», ассоциируемого с процессом выполнения алгоритма людьми, чье присутствие никак не влияет на их собственное сознание. Однако, я бы скорее согласился с Серлем, что эта возможность представляется, мягко говоря, малоправдоподобной. Мне сдается, что довод Серла весьма убедителен, хотя и не является решающим. Он с очевидностью демонстрирует, что алгоритм такой степени сложности, которой обладает компьютерная программа Шенка, не может иметь какого бы то ни было понимания выполняемых задач; также из него предположительно следует (и не более того), что ни один алгоритм, независимо от сложности его структуры, не может сам по себе воплощать настоящее понимание — вопреки утверждениям поборников сильного ИИ.
Существуют, на мой взгляд, и иные очень серьезные проблемы, связанные с сильным ИИ. Согласно этой точке зрения, единственное, что имеет значение — это алгоритм. И совершенно неважно, кто приводит его в действие: человеческий мозг, электронный компьютер, целое государство индийцев, механическое устройство из колесиков и шестеренок или система водопроводных труб. В рамках этой теории существенным для воплощения заданного «состояния разума» является сама логическая структура алгоритма, а его физическая реализация никакой роли не играет. Но, как указывает Серл, это может привести к определенной форме дуализма. Дуализм — это философское мировоззрение, апологетом которого был в высшей степени влиятельный философ и математик XVII века Рене Декарт, утверждавший, что существуют две различные субстанции: «разумная субстанция» и обычная материя. Влияют ли они друг на друга, и если да, то каким образом — это уже отдельный вопрос. Ключевое положение этой точки зрения заключается в гипотезе о том, что «разумная субстанция» не может состоять из материи обычной и способна существовать независимо от нее. «Разумная субстанция» в представлениях сильного ИИ— это логическая структура алгоритма. Как я отмечал выше, ее физическое воплощение не имеет никакого значения. Алгоритм обладает неким бесплотным существованием, никак не связанным с конкретной физической реализацией. Насколько серьезно мы должны воспринимать такой вид существования — вопрос, к которому мне придется вернуться в следующей главе. Он представляет собой часть более глобального вопроса о платонистической реальности абстрактных математических объектов.
Пока же я обойду эту общую тему стороной и отмечу только, что сторонники сильного ИИ, по-видимому, принимают всерьез возможность подобного существования в случае алгоритмов, полагая, что те являются самой «сущностью» их мыслей, чувств, понимания и сознательного восприятия. В связи с этим Серл указал на примечательный в своей ироничности факт: теория сильного ИИможет привести к крайней форме дуализма — к той точке зрения, к которой сторонники сильного ИИменее всего хотели бы иметь отношение!
Эта дилемма просматривается в рассуждениях, предложенных Дугласом Хофштадтером [1981] — убежденным сторонником сильного ИИ— в диалоге с названием « Беседа с мозгом Эйнштейна». Хофштадтер выставляет на обозрение книгу, имеющую абсурдно большие размеры и содержащую, по его утверждению, полное описание мозга Альберта Эйнштейна. Идея такова: на любой вопрос, который кто-либо пожелал бы задать Эйнштейну, можно получить ответ в точности такой, каким был бы ответ живого Эйнштейна, если просто листать книгу и тщательно следовать всем приведенным в ней инструкциям. Конечно же, слово «просто» здесь совершенно неуместно, как то особо оговаривает сам Хофштадтер. Ведь смысл его утверждения иной: принципиально эта книга полностью эквивалентна (в операционалистском смысле теста Тьюринга) до смешного медленной «версии» настоящего Эйнштейна. Тем самым, если следовать положениям теории сильного ИИ, эта книга должна была бы думать, чувствовать, понимать и осознавать в точности так, как это делал бы сам Эйнштейн, только невероятно медленно (так что для этого « книго– Эйнштейна» внешний мир казался бы мелькающим перед ним с огромной скоростью). И естественно, что книга, представляющая из себя частную реализацию алгоритмизованной «сущности» Эйнштейна, была бы как раз-таки самимЭйнштейном.