Чтение онлайн

на главную

Жанры

О чем рассказывает свет

Суворов Сергей Георгиевич

Шрифт:

Но в принципе такая проблема уже решена в фотоэлементах (см. опыт Столетова). В них как раз и происходит непосредственное превращение световой энергии в энергию потока электронов, т. е. в электрический ток. Надо только изготовить достаточное количество надежно и экономично работающих фотоэлементов и покрыть ими крыши домов и все свободные площади. Но это «только» — легко сказать. На деле задача эта не проста. Для ее выполнения потребовалось бы большое количество редких химических материалов. Их надо подвергнуть весьма тщательной химической очистке и добиться почти абсолютной однородности. Изготовление фотоэлементов в больших масштабах технически сложно и пока дорого. Пока они изготовляются лишь в количествах, необходимых для приборостроения

и автоматики. Конечно, когда маленький фотоэлемент полностью заменяет человека, как это имеет место, например, в автоматических контролерах, стоящих при входе в московское метро, это выгодно. Еще более выгодно применять системы фотоэлементов на космических кораблях. Там они используются для ориентации корабля (по Солнцу или по Луне), а также для получения электротока от солнечных лучей (солнечные батареи). На космических кораблях фотоэлементы имеют особое преимущество, поскольку они обеспечивают длительное действие приборов и не утяжеляют корабль. Однако пока они дают немного энергии и применяются на космических кораблях лишь как дополнение к обычным химическим батареям.

В этом методе непосредственного превращения солнечной энергии в электрическую есть еще много технических и экономических трудностей. Но в принципе здесь все уже ясно. Поэтому многие ученые видят в нем главный и перспективный источник получения энергии для нужд человека. Эти идеи особенно активно развивал выдающийся русский физик академик А. Ф. Иоффе (1880—1960).

Превращение вещества в свет как источник энергии

Рождаясь в недрах вещества, свет раскрыл перед мыслящим человеком огромные кладовые энергии, связанной в атомах. Без изучения языка света, несущего информацию о сложной структуре атома, нельзя было ни осознать этот факт, ни поставить и решить проблему высвобождения атомной энергии. Частично эта задача уже решена. Мы уже построили и строим атомные электростанции, атомные ледоколы и подводные лодки.

Но познание атомов как источников энергии находится еще в самом раннем периоде своей истории. Мы пока еще используем энергию синтеза или же распада атомов, притом только определенных атомов.

Еще не раскрыта сложная структура ядра и элементарных частиц. Быть может, наибольшую энергию можно будет получать не при переходе атома с одного энергетического уровня на другой и даже не в процессе распада или синтеза атомов, а в процессах совершенно иного рода. Выше уже говорилось о том, что физики установили факт превращения частиц вещества — электрона и позитрона, находящихся в сильном поле ядра, в гамма-кванты, т. е. в свет. Этот процесс связан с максимальным образованием энергии.

Позитрон является такой же частицей вещества, как и электрон, но только заряд его не отрицателен, а положителен; он является как бы отображением электрона, или, как говорят физики, его античастицей. В наше время известно свыше тридцати различных элементарных частиц; для некоторых из них уже открыты их античастицы. Например, установлено наличие не только элементарной частицы — протона, но и антипротона, не только нейтрона, но и антинейтрона. По-видимому, каждая элементарная частица имеет свою античастицу. Соединение частицы и античастицы в особых условиях (сильные ядерные поля) приводит к превращению их в соответствующие кванты излучений. Можно предполагать, что любая пара элементарных частиц — частица и ее античастица, — взаимодействуя друг с другом в сильных полях, претерпит превращение в кванты света. Эти превращения будут сопровождаться огромными энергиями, гораздо большими, чем те, которые связывают и отдают такие возбужденные физические системы, как молекулы, а темы и ядра.

В поисках условий, при которых протекают подобные процессы, физики создают мощные ускорители, в которых в огромном пустом внутри кольце периодически меняющиеся поля разгоняют элементарные частицы до очень больших скоростей. Эти частицы достигают на выходе огромных энергий, порядка миллиардов

электрон-вольт. Так, в Дубне в Объединенном институте ядерных исследований уже несколько лет работает ускоритель, в котором получаются частицы с энергией до 10 миллиардов электрон-вольт. В Швейцарии вступил в строй ускоритель объединенных западных держав; элементарные частицы разгоняются в нем до 25 миллиардов электрон-вольт. В Советском Союзе проектируется еще более мощный ускоритель.

Для чего физики упорно стремятся получить частицы все более высоких энергий? Для того, чтобы с их помощью прощупать структуру ядер, элементарных частиц, взаимодействие их между собой, открыть новые возможные частицы, закономерности их взаимопревращений, их превращения га кванты света. Эти исследования должны раскрыть, какие превращения протекают в глубинах атома, выяснить, при каких условиях и какую энергию могут освободить в этих превращениях ядра или элементарные частицы.

Исследования физики в области атомной энергии тесно переплетаются с исследованиями астрофизиков. Результаты, полученные одними, помогают другим осмыслить наблюдаемые явления.

Долгое время астрофизики пытались разгадать, каков источник столь мощного излучения Солнцем световой энергии. В прошлом веке образование солнечной энергии пытались объяснить сильным сжатием Солнца, т. е. превращением механической энергии. Однако подсчеты показали, что величина энергии, которую возможно получить за счет сжатия, была бы ничтожно мала по сравнению с действительной. Точно так же было выяснено, что огромную величину излучаемой солнечной энергии нельзя объяснить никакими химическими реакциями окисления.

Только тогда, когда ученые постигли структуру атомов и их различные превращения, они поняли, что солнечная энергия образуется в результате ядерных реакций. В настоящее время полагают, что световая энергия Солнца получается в результате ядерной реакции, при которой 4 атома водорода превращаются в атом гелия и два позитрона; при этом выделяется около 27 миллионов электрон-вольт энергии в расчете на один грамм превращенного водорода. Количественный спектральный анализ показал, что на 80% Солнце состоит из водорода и на 18% из гелия. Расчеты показывают, что Солнцу с его огромным запасом водорода и при его теперешней интенсивности излучения хватило бы энергии, освобождаемой при превращении водорода в гелий, на сотни миллиардов лет.

Интерес физиков все более приковывается к процессам, происходящим во Вселенной. Ведь звезды представляют собой гигантские ядерные котлы, в которых природа создала исключительные условия высоких температур и давлений, недостижимые в земных условиях. Мы знаем об этих исключительных условиях опять-таки из анализа звездных спектров. В недрах звезд протекают реакции, о которых мы, быть может, еще не имеем представления и которые служат источником колоссальных энергий, излучаемых в мировое пространство. Какие колоссальные запасы энергий хранятся в звездах и испускаются в виде энергии света, трудно себе и представить. Энергия некоторых звезд превышает солнечную в десятки и сотни тысяч раз. Длительность излучения у каждой звезды исчисляется многими миллиардами лет. Только в одной нашей Галактике содержится более ста миллиардов звезд.

Замечательно, что вся эта информация прочитана путем расшифровки языка света, падающего на Землю.

Мощные источники энергии в ядрах радиогалактик

Не все явления, наблюдаемые астрофизиками, можно объяснить посредством ядерной реакции превращения водорода в гелий. Уже около полусотни лет ученые изучают космические лучи, приходящие к нам на Землю из далеких глубин Вселенной. Эти «лучи» представляют собой поток быстродвижущихся положительно заряженных частиц — протонов, а также в небольшом количестве альфа-частиц и других ядер. Энергия этих частиц огромна, она измеряется миллиардами электрон-вольт, а в отдельных случаях доходит до сотен миллионов миллиардов электрон-вольт.

Поделиться:
Популярные книги

Физрук 2: назад в СССР

Гуров Валерий Александрович
2. Физрук
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Физрук 2: назад в СССР

Адепт. Том второй. Каникулы

Бубела Олег Николаевич
7. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.05
рейтинг книги
Адепт. Том второй. Каникулы

Свет во мраке

Михайлов Дем Алексеевич
8. Изгой
Фантастика:
фэнтези
7.30
рейтинг книги
Свет во мраке

Афганский рубеж

Дорин Михаил
1. Рубеж
Фантастика:
попаданцы
альтернативная история
7.50
рейтинг книги
Афганский рубеж

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

Вдова на выданье

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Вдова на выданье

Попаданка

Ахминеева Нина
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Попаданка

Последний попаданец 9

Зубов Константин
9. Последний попаданец
Фантастика:
юмористическая фантастика
рпг
5.00
рейтинг книги
Последний попаданец 9

Авиатор: назад в СССР 12

Дорин Михаил
12. Покоряя небо
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Авиатор: назад в СССР 12

Двойня для босса. Стерильные чувства

Лесневская Вероника
Любовные романы:
современные любовные романы
6.90
рейтинг книги
Двойня для босса. Стерильные чувства

Последняя Арена 11

Греков Сергей
11. Последняя Арена
Фантастика:
фэнтези
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 11

Убивать чтобы жить 2

Бор Жорж
2. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 2

Возвышение Меркурия. Книга 15

Кронос Александр
15. Меркурий
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 15

Чехов. Книга 3

Гоблин (MeXXanik)
3. Адвокат Чехов
Фантастика:
альтернативная история
5.00
рейтинг книги
Чехов. Книга 3