О движении(Из истории механики)
Шрифт:
Каждый кровельщик, конечно, знал, что квадраты, построенные на катетах прямоугольного треугольника, содержат вместе столько черепиц, сколько их укладывается в квадрате, построенном на гипотенузе. Оставалось выразить это знание в терминах геометрии, чтобы «открыть» теорему Пифагора.
Вот почему эта теорема в греческой геометрии носила название «моста ослов», то-есть истины, известной всем, кроме невежд.
В механике Пифагору принадлежит открытие, что гармонические звуки издаются струнами, длины которых находятся в простом числовом отношении. Пифагорейцы установили, что одинаково натянутые струны равной толщины, если их длины относятся как 1:2, 2:4, 3:4, 4:5,
1
Консонирующими звуками называются такие, сочетание которых дает согласное звучание (благозвучие).
Но пифагорейцы приписали гармоничность сочетаний этих звуков числам, выражающим отношение между длинами струн. Подобную же «гармонию» они стали искать и во всех других явлениях природы.
Математика древних греков получила наибольшее развитие в александрийский период.
Александрия — мировой коммерческий порт античного времени — была основана Александром Македонским у устья Нила в 30-х годах IV века до н. э.
После смерти Александра Македонского в 323 году до н. э. Египтом правил Птолемей, сын Лага (Птолемей I Сотер). Он привлекал в Александрию ученых, писателей, архитекторов, инженеров. В начале III века до н. э. была основана Александрийская академия. Для этого учреждения воздвигли великолепное здание с аудиториями, рабочими комнатами и жилыми помещениями для ученых. При академии несколько позднее была собрана богатейшая библиотека, в которой хранились подлинники сочинений философов, математиков, астрономов и других ученых. Владельцам этих подлинников оставлялись только копии.
В эпоху расцвета научной деятельности Александрийской академии в ее библиотеке находилось четыреста тысяч пергаментных свитков и папирусов. Кроме того, триста тысяч свитков хранилось в храме Юпитера.
Александрия стала не только центром промышленности, но и средоточием научной деятельности и художественного творчества.
Науки, возникшие из потребностей практики, получили в трудах греческих ученых теоретическое завершение.
Астрономия на Востоке не имела других целей, кроме установления календарных дат и предсказания затмений. В Греции она стала наукой о строении вселенной.
Геометрия, бывшая в Египте, Вавилонии и Индии искусством землемеров и строителей храмов, была поднята александрийскими учеными на уровень математической теории.
Из греческих математиков раннего александрийского периода наибольшую известность получил Евклид, живший в конце IV и начале III века до н. э. Он оставил свои знаменитые «Начала» — сочинение по геометрии, в котором были исследованы свойства треугольника, параллелограммов, многоугольников, дано понятие о цилиндре, конусе и шаре. Евклид был занят задачей построения квадрата, площадь которого была бы равна площади треугольника, параллелограмма, многоугольника. Он вычислял объемы геометрических тел.
Но вычисление площади круга, поверхности и объема цилиндра и шара было еще нерешенной проблемой для Евклида.
В «Началах» Евклида геометрия впервые была приведена в стройную систему. Это сочинение служит образцом строгости доказательств и последовательности изложения.
В течение более двух тысячелетий «Начала» служили руководством при изучении геометрии. Все великие математики прошлого начинали знакомство с геометрией по этой книге.
Евклид не стремился приложить свои математические способности к физике или технике. Он, правда, разработал учение об отражении лучей света от плоских и кривых зеркал. Но это было для него чисто геометрической задачей.
По свидетельству историков, о приложении геометрии к механике Евклид и не думал. Когда один юноша спросил его, какую пользу получит он от изучения геометрии, Евклид, по преданию, сказал своему слуге: «Дай этому человеку три обола [2] , он ищет от геометрии пользу».
Однако скоро нашелся ученый, который посмотрел на задачи механики с точки зрения геометрии.
До того времени механика была искусством техников, усваивавших различные чисто практические правила. Приложение к ней математики превратило механику в строгую науку.
2
Обол — древняя греческая монета. Во времена Гомера оболом называли железный прут, который служил в качестве монеты. Поэтому позднее мелкую монету также назвали оболом.
Подобно геометрии, в механике делаются выводы, исходя из известных по опыту данных — аксиом.
Открытие законов равновесия тел
Знаменитейший из древнегреческих математиков, Архимед (287–212 до н. э.) первый заложил основы современной механики.
Архимед был сыном знатного, но небогатого гражданина Сиракуз — астронома Фидия. Он получил образование в Александрии, где основательно познакомился с трудами Евклида и других математиков.
Математическим дарованием Архимед превосходил всех своих предшественников и современников. Он по праву признан одним из величайших геометров всех времен и народов.
Архимед за решением геометрической задачи.
Архимед первый вычислил с точностью до третьего десятичного знака отношение длины окружности к диаметру.
Он исследовал свойства эллипса, параболы и гиперболы — кривых, полученных сечением конуса плоскостью.
Математики знали, что если пересечь прямой конус плоскостью, наклонной к его высоте, то получится эллипс. Пересечение параллельно образующей дает параболу, а параллельно высоте — гиперболу.
Но каковы свойства этих кривых? Как вычислить площадь круга, эллипса или сегмента параболы и гиперболы? Архимед нашел путь к решению подобных задач, названный в средние века «методом исчерпывания». Этот метод он и применил для вычисления площадей фигур, ограниченных кривыми.
Как найти с помощью этого метода, например, площадь круга?
Архимед вписал в круг правильный шестиугольник. Площадь этой фигуры равна сумме площадей шести треугольников, на которые разобьется шестиугольник, если соединить его вершины с центром круга.
Площадь круга больше площади этого шестиугольника на сумму площадей шести сегментов, ограниченных его сторонами и дугами круга.
Удвоив число сторон шестиугольника, Архимед получил двенадцатиугольник, площадь которого ближе к площади круга.
Затем легко вписать двадцатичетырехугольник, еще более близкий к кругу. Так постепенно «исчерпывается» площадь круга.