О границах науки
Шрифт:
В «Оптике» Ньютона также есть общефилософские рассуждения, в которых ученый говорит о своих метафизических предпосылках. Гармония органов природных существ несомненно свидетельствует, по Ньютону, о мудрости и искусстве их Творца. «… Пребывая всюду, он более способен своею волею двигать тела внутри своего безграничного чувствилища и благодаря этому образовывать и преобразовывать части вселенной, чем мы посредством нашей воли можем двигать части наших собственных тел [курсив мой. – В. К.]» [27] . Тем самым пространство и время физической картины мира, даваемой классической механикой, оказываются чувствилищем Бога. Это гарантирует и их абсолютность, и их бесконечность. Именно так, через призму богословского видения, идея бесконечности вселенной входит в науку и, шире, в общекультурное сознание XVIII века, становясь со временем – с утерей веры в Бога – любопытным парадоксом…
27
Ньютон И. Оптика, или Трактат об отражениях, преломлениях, изгибаниях и цветах света. М.; Л., 1927. С. 313. И, однако, подчеркивает Ньютон далее, мы не можем рассматривать мир как тело Бога или Бога как душу мира (см. там же).
3. «Метафизика геометров»
До этого мы говорили о метафизических предпосылках в физике, так сказать, макро- и мегауровней. Но возникающее в XVII веке новое естествознание вынуждено вводить еще и метафизику микроуровня. Это естествознание, как мы подчеркиваем, становится,
28
Как и актуально бесконечно большой величины.
Но вот XVII век вводит в науку понятие актуально бесконечных величин. Пионеры науки Нового времени – Галилей, Лейбниц, Ньютон – прекрасно осведомлены об античном табу на актуальную бесконечность, но, тем не менее, они вводят эти новые конструкции и, более того, делают их основным инструментом математического естествознания. История легализации актуальной бесконечности в науке существенным своим моментом имеет христианское богословие. Античная мысль не может допустить спекуляции об актуально бесконечном, грубо говоря, по простой причине: у нее нет бесконечного предмета, к которому можно бы было привязать эти рассуждения. Но вот с приходом христианства такой «предмет» появляется: христианский Бог довольно быстро, хотя и не сразу, осознается богословами как бесконечно могущественный, бесконечно благой, бесконечно мудрый [29] . Богословы начинают рассуждать о бесконечности Бога, о возможности разных степеней бесконечности, о существовании бесконечностей в тварном мире и т. д. Ко времени поздней схоластики в западном богословии уже налицо целая «культура» обсуждений и конструкций с актуальной бесконечностью, причем не только богословских, но и натурфилософских [30] . Возрождение с его интересом к оккультизму и пафосом «раскрытия тайн» еще более узаконивает тему бесконечности. Поэтому не удивительно, что XVII столетие легализует концепцию актуальной бесконечности и в науке, в дифференциальном и интегральном исчислениях.
29
Подробнее см. мои работы: Катасонов В. Н. Концепция актуальной бесконечности как «научная икона» Божества // Христианство, наука, культура. М., 2005; Катасонов В. Н. Боровшийся с бесконечным. Философско-религиозные аспекты генезиса теории множеств Г. Кантора. М., 1999.
30
См. об этом, например, в прекрасной книге: Зубов В. П. Развитие атомистических представлений до начала XIX века. М., 1965. Гл. П.
Легализует, но при этом ясно осознает, что тем самым строится уже новая наука. Лейбниц, один из создателей дифференциального и интегрального исчислений, прекрасно понимал, что с ними неизбежно приходит некая новая метафизика: «…Судьба даровала нашему веку прежде всего то, что после столь долгих лет забвения вновь воссиял светоч математики, как я его называю. Ведь были открыты и развиты Архимедовы способы исчерпывания через неделимые и бесконечные, что можно было бы назвать метафизикой геометров, и что, если я не ошибаюсь, было неизвестно большинству древних, за исключением Архимеда» [курсив мой. – В. К.] [31] .
31
Элементы разума. С. 452 // Лейбниц Г. В. Сочинения в 4 томах. Т. 3. М., 1984.
Что же это за новая геометрическая метафизика? Речь идет о введении неких новых постулатов в геометрию, необходимых для конструкций дифференциального исчисления. Так, в одном из первых учебников дифференциального исчисления маркиза Г. Ф. Лопиталя, ученика и соратника Лейбница, в деле развития этого нового учения мы читаем: вводится «…требование или допущение: требуется, чтобы можно было рассматривать кривую линию как совокупность бесконечного множества бесконечно малых прямых линий, или же (что то же самое) как многоугольник с бесконечным числом бесконечно малых сторон…» [32] . То, что многоугольник, вписанный, например, в окружность, при бесконечном увеличении (удвоении) его сторон будет стремиться к окружности, это, конечно, античные математики знали и даже использовали в своих вычислениях. Однако никто не считал на основании этого, что окружность есть бесконечный многоугольник с бесконечно малыми сторонами!.. Более того, острое чувство качественного отличия окружности от любого многоугольника, кривой от прямой, за которым стоял глубоко осознанный опыт онтологических рангов реальности, приводил к тому, что это соотношение вписанного многоугольника и описанной окружности нередко понимали как символ соотношения рассудочного знания и реальности: кажущаяся близость, но принципиальное внутреннее отличие…
32
Лопиталь Г. Ф. Анализ бесконечно малых. М.; Л., 1935. С. 63–64.
Но как раз от этого различения и отказывается XVII столетие. Речь идет именно о введении новой метафизики. Речь не идет о каком-то эмпирическом факте, который кто-то когда-то открыл и увидел: ведь увидеть эти бесконечно малые нельзя ни в какой микроскоп. Лейбниц, как мы уже отмечали, отлично понимает этот метафизический характер нового постулата. Еще одна цитата: в одном письме к Мальбраншу, говоря о путях промысла Божия, Лейбниц пишет: «В сущности ничто не является для Него безразличным, и ни одна тварь и ни одно действие твари не считаются у Него ничтожными, хотя в сравнении с Ним они почти ничто. Свои взаимоотношения они сохраняют и перед Ним, подобно тому как линии, которые мы рассматриваем как бесконечно малые, имеют практически важные соотношения, несмотря на то что в сравнении с обычными линиями они кажутся ничтожными. Кажется, я уже пользовался этим сравнением» [33] . Сравнение любопытно. На первый взгляд здесь ставятся в параллель отношения Бога к твари и отношение обычных линий к бесконечно малым. Хотя несколько странно, что Бог уподобляется «обычной линии»… В то же время говорится: «линии, которые мы рассматриваем как бесконечно малые». Мы рассматриваем эти линии как бесконечно малые, аналогично тому, как Бог смотрит на тварь, которая по сравнению с ним почти ничто. Наше отношение к этим постулируемым бесконечно малым линиям подобно отношению Бога к твари. То есть мы смотрим на них как бы с точки зрения Бога, с точки зрения самой Истины. Другими словами, это действительно некоторая сверхопытная метафизика…
33
Лейбниц –
С ней уже в XVII веке было много несогласных. Декарт так и не принял метода бесконечно малых. Известны острые инвективы Беркли против геометрических построений в бесконечно малых треугольниках и точках. С критикой использования актуальной бесконечности выступали Б. Паскаль и А. Арно [34] . И действительно, ведь если метод дифференциального исчисления держится на вышеупомянутом постулате [35] , а последний есть только достаточно произвольное положение (мы не столько знаем, что так есть, сколько требуем, желаем, чтобы так было), то тогда все знание, выводимое с помощью дифференциального исчисления, становится в высшей степени условным. Так же как в истории со знаменитым пятым постулатом Евклида, когда оказалось, что его можно заменить на другие положения, и тогда получатся другие типы геометрии, так же и здесь, может быть, можно предложить постулировать другие свойства пространства, и тогда мы получим совсем иную геометрию?.. А наша, лейбницевско – лопиталевская форма геометрии есть только лишь некая частная форма, одна из возможных точек зрения на пространство и на все, в нем находящееся…
34
См. мою статью: Концепция актуальной бесконечности как «научная икона» Божества // Катасонов В. Н. Христианство, Наука, Культура. М., 2005.
35
То есть из учебника Г. Ф. Лопиталя.
Все построения с бесконечно малыми рассматриваются Лейбницем не только в геометрии, но и в физике, в создаваемой при его существенном участии новой науке, классической механике. Здесь, между прочим, ясно выступают истинные причины той новой «метафизики геометров», о которой говорил Лейбниц. Ученый и философ отлично понимает, что введение новых законов механики требует их обоснования. Поэтому наряду с законами механики он формулирует и другие законы, более высокого логического порядка. Лейбниц называет их архитектоническими принципами. Причем последние прямо связываются философом с Божественной мудростью: «…все природные явления можно объяснить механически, если мы в достаточной мере сумеем понять их, но сами принципы механики не могут быть объяснены геометрически, так как они зависят от более высоких принципов, которые указывают на мудрость Творца порядком и совершенством своего творения» [36] . Одним из фундаментальных архитектонических принципов у Лейбница является принцип непрерывности: «Когда случаи (или то, что дано) непрерывно сближаются и наконец сливаются друг с другом, необходимо, чтобы следствия, или результаты (или то, что ожидается), претерпевали то же» [37] . Принцип непрерывности означает, что в мире нет скачков, hiatus'ов – «зияний», которые были бы необъяснимы. За принципом непрерывности стоит в конце концов логическая непрерывность, принцип достаточного основания: все происходящее должно иметь достаточную причину, что оно таково, а не иное. Иначе была бы скомпроментирована разумность творения, премудрость Бога. Лейбницевский рационализм в этом смысле есть некий сверхрационализм, основывающийся на богословских аргументах. Но поскольку он выступает как философия человеческого познания, он может оборачиваться и титаническим рационализмом, как претензией на окончательное познание всего сущего… Принцип непрерывности служит основанием для переосмысления и самого движения. «Это же правило, – пишет Лейбниц, – имеет место в физике, например, состояние покоя можно рассматривать как бесконечно малую скорость и бесконечно большую медленность. Поэтому все, что истинно в отношении медленности или скорости, должно оправдывать себя и применительно к покою, рассматриваемому с той точки зрения и, таким образом, правило покоя должно быть расценено как частный случай правила движения… Точно так же равенство может рассматриваться как бесконечно малое неравенство, и можно сколь угодно сближать неравенство с равенством» [38] . Сколь угодно малое сближение неравенства и равенства означает не только то, что равенство можно понимать как бесконечно малое неравенство, но и неравенство как бесконечную цель бесконечно малых равенств. Аналогично не только покой можно интерпретировать как бесконечно медленное движение, но и движение рассматривать как бесконечную сумму бесконечно малых движений, а бесконечно малое движение и есть, в свою очередь, покой. Другими словами, Лейбниц как бы принимает классическое построение Зеноновского парадокса «Стрела»: «движение есть бесконечная сумма состояний покоя; но покой заменяется здесь бесконечно малым движением». На языке классической механики это означает введение понятия мгновенной скорости. Понятия такого же парадоксального, как и бесконечно малое движение, то есть скорости тела, находящегося в данной точке.
36
Лейбниц Г. В. Анагогический опыт исследования причин. С. 129 // Лейбниц Г. В. Сочинения в 4 томах. Т. 3.
37
Письмо господина Лейбница о всеобщем принципе, пригодном для объяснения законов природы с точки зрения божественной мудрости, служащее отзывом на ответ преподобного отца Мальбранша. С. 357 // Лейбниц Г. В. Сочинения в 4 томах.
38
Цит. соч. С. 358.
4. Дискретность как научно-методологический и метафизический принцип
Лейбницевские метафизические обоснования новой математики и физики недолго занимают собственно ученых. Идеал ученого-энциклопедиста, знающего и занимающегося всем или почти всем, постепенно, по мере развития науки становится недостижимым. Заниматься опытной наукой и одновременно обсуждать философские, а тем более богословские основания этой науки становится все труднее. Наконец, с середины XIX века О. Конт вообще объявляет эти проблемы ненаучными. Кроме того, разрастающееся здание математики и ее успешное применение к естествознанию и технике как бы несли оправдание этих новых методов в самих себе. Однако наиболее глубокие и принципиальные ученые никогда не оставляли надежды получить какое-то обоснование той метафизике геометров, которая была связана с дифференциальным и интегральным исчислением.
С середины XIX века усилия сосредотачиваются на проблеме арифметизации континуума. Несмотря ни на какие успехи математики и математического естествознания, невозможно уже было скрывать, что даже в геометрии мы, строго говоря, не любой отрезок можем измерить. Ведь уже греки открыли факт несоизмеримости. Нужна была строгая концепция действительного числа. В 1870-х годах такие концепции были предложены целым рядом математиков: Ш. Мере, К. Вейерштрассом, Г. Кантором, Р. Дедекиндом. Существенно, что все их конструкции использовали актуальную бесконечность. Кантор в своих исследованиях тригонометрических рядов подходит к идее общей теории множеств. В 1870-1880-х годах у него уже созрели основные понятия этой теории: понятия мощности множества, кардинальных и ординальных чисел. Он доказывает знаменитую теорему, носящую с тех пор его имя, о несчетности множества действительных чисел, строит свою арифметику бесконечных чисел [39] . В геометрии главной проблемой для теории множеств является конструирование континуума. Кантор предлагает несколько таких конструкций, стремясь выделить в континууме то, что делает его собственно непрерывным. Встает вопрос о мощности множества точек континуума. Кантор делает предположение, что эта мощность есть следующая по величине после счетного множества («континуум-гипотеза»). Однако доказать это или опровергнуть ему не удается [40] .
39
Подробнее см. в моей книге: Катасонов В. Н. Боровшийся с бесконечным…
40
Как известно, в XX веке усилиями К. Гёделя и П. Коэна было доказано, что континуум-гипотеза независима от аксиом теории множеств Цермело – Френкеля.