Чтение онлайн

на главную

Жанры

О редких и рассеянных. Рассказы о металлах
Шрифт:

Прежде всего они выяснили, что заокеанский молибден излучает бета-частицы — быстрые ядерные электроны. Значит, в нем действительно «сидит» радиоактивный изотоп, но какой именно? Это может быть изотоп как самого молибдена, так и других элементов, например циркония, ниобия, рутения или искомого «сорок третьего».

В результате скрупулезного химического «расследования» все элементы, кроме последнего, сумели доказать свою полную непричастность к бета-излучению. После их удаления ученые получили, наконец, долгожданный «эка-марганец». Правда, получили — пожалуй, слишком громко сказано: как выяснилось несколько позднее, они имели дело всего с 0,0000000001 грамма нового вещества. Впрочем, для физиков

одна десятимиллиардная доля грамма — не так уж и мало: открытие менделевия (№ 101) было зарегистрировано, когда удалось «добыть» всего 17 атомов этого элемента. Для наглядности приведем такой пример: если все атомы железа, содержащиеся в крохотной булавочной головке, равномерно распределить по поверхности земного шара, то на каждом квадратном метре «обоснуется» добрый десяток миллионов(!) атомов.

Но мы несколько отвлеклись от главных событий, которым посвящен наш рассказ. Итак, в июне 1937 года искусственным путем ученым удалось воссоздать первый из «вымерших» на Земле химических элементов. Не мудрствуя лукаво, Э. Сегре и К. Перье назвали сорок третий элемент технецием, что в переводе с греческого («техникос») значит искусственный.

Хотя технеция в руках ученых было, скажем прямо, не густо, они все же сумели определить некоторые свойства нового элемента и убедились, что он родственник рения, причем довольно близкий, а не «седьмая вода на киселе».

Вполне понятно, как велико было желание химиков и физиков всего мира узнать побольше подробностей об искусственном новоселе таблицы Менделеева. Но чтобы изучать технеций, нужно было его иметь. Все понимали, что на облученный молибден рассчитывать не приходилось: слишком беден он был технецием. Требовалось подыскать более подходящую кандидатуру на роль поставщика этого элемента.

Поиски продолжались недолго: уже в 1940 году все тот же Сегре и его ассистентка By Цзянь-сюн обнаружили, что один из самых долгоживущих изотопов технеция в довольно солидных количествах присутствует в так называемых «осколках», образующихся при делении урана в результате облучения его нейтронами (этот процесс лежит в основе работы ядерных реакторов). На один килограмм «осколков» приходится несколько граммов технеция — тут уже есть о чем поговорить всерьез. Неудивительно, что ядерные реакторы стали по совместительству своеобразными «фабриками», производящими технеций.

Поначалу продукция этих «фабрик» — тяжелый тугоплавкий серебристо-белый металл — стоила, прямо скажем, дороговато — в тысячи раз дороже золота. Но атомная энергетика развивалась весьма энергично (на то она и энергетика!). С каждым годом «сжигалось» все больше ядерного топлива, и урановые «осколки» постепенно становились не столь дефицитным товаром, как прежде. Цена на технеций начала резко падать. Однако процесс извлечения его из радиоактивных «осколков» очень и очень сложен, поэтому еще в 1965 году каждый грамм «синтетического» металла оценивался на мировом рынке в 90 долларов. Но производство его определялось уже не долями миллиграмма, а десятками и сотнями килограммов, и ученые могли теперь всесторонне изучить его свойства, попытаться определить возможные сферы его будущей деятельности.

Важнейшая профессия технеция определилась довольно быстро: борьба с коррозией. Эта коварная «хищница» наносит человечеству огромный ущерб, безжалостно съедая каждый год десятки миллионов тонн стали. Металлурги, правда, умеют варить нержавеющую сталь — «блюдо», которое коррозии не по зубам. Но, во-первых, такая сталь значительно дороже обычной; во-вторых, стали всякие нужны, а сделать металл одновременно и нержавеющим, и, например, износостойким не всегда возможно; наконец, в-третьих, просто не напастись столько хрома и никеля, без которых «нержавейку» не сваришь, как не приготовишь уху без рыбы. Металловеды, химики, физики постоянно ищут способы умерить аппетит коррозии, сделать ее менее прожорливой.

Решить антикоррозионную проблему не так-то просто, но успехов на этом поприще уже немало. Ученые обнаружили, в частности, что некоторые вещества обладают ценнейшими свойствами: они делают поверхность металла химически пассивной и, таким образом, надежно предохраняют изделия от коррозии. Эти вещества получили название ингибиторов (от латинского слова «ингибире» тормозить, удерживать). Самым способным из них оказался технеций: он обладает наибольшим ингибирующим эффектом. Если стальную деталь обработать раствором, в котором присутствуют едва уловимые количества пертехнатов (солей технециевой кислоты) — всего стотысячные доли процента, то она окажется неприступной крепостью для ржавчины. Даже значительный нагрев (до 250 °C) не в силах при этом помочь «агрессору».

Немалый интерес представляет еще одно ценное свойство технеция. Известно, что вблизи абсолютного температурного нуля (-273,16 °C) многие металлы становятся сверхпроводниками, т. е. практически перестают оказывать какое бы то ни было сопротивление прохождению электрического тока. Чем выше точка перехода в сверхпроводящее состояние (так называемая критическая температура), тем большие перспективы сулит это свойство технике. В этом отношении у технеция нет конкурентов: он совершенно беспрепятственно проводит ток при 8,24 К (-264,92 °C), в то время как другим металлам для этого нужно еще немного «поостыть».

Ученые не теряют надежды найти технеций в земной коре, поскольку теоретически можно предположить, что «осколки» урана образуются и в природных кладовых этого элемента; кроме того, не исключена возможность появления технеция в различных горных породах, содержащих молибден, рутений, ниобий: их изотопы под действием космических нейтронов, достигающих Земли, способны превращаться в изотопы элемента № 43.

И все же возлагать большие надежды на нашу планету, пожалуй, не приходится. Вот почему многие исследователи в поисках технеция обратили свой взор (в буквальном смысле) на другие небесные тела. Еще в 1951 году американский астроном Шарлотта Мур опубликовала сенсационное сообщение: спектральным анализом технеций обнаружен на Солнце. Спустя год английский астрофизик Р. Мерилл нашел линии этого элемента в спектре некоторых звезд из созвездий Андромеды и Кита. Правда, дальнейшими исследованиями открытие Мур не подтвердилось, зато существование технеция на далеких звездах неопровержимо доказывали сотни спектрограмм.

Но самое удивительное было в том, что звездные запасы этого элемента оказались вполне сопоставимыми с содержанием циркония, ниобия, молибдена. Может быть, технеций из созвездия Андромеды, в отличие от земного, стабилен и потому распаду не подлежит? Нет, это исключено. Тогда, возможно, звезды, о которых идет речь, намного моложе земли и технеций еще просто не успел превратиться в другие элементы? И такая версия отпадает, потому что эти звезды и наша планета принадлежат к одному «поколению».

В таком случае напрашивается единственный вывод: внутри некоторых небесных тел технеций образуется и в настоящее время. Как это происходит, наука еще не может точно объяснить, а лишь выдвигает ряд гипотез. Видимо, в процессе эволюции звезд в их недрах непрерывно протекают термоядерные реакции и в результате на свет рождаются различные химические элементы.

Вполне возможно, что где-то в просторах Вселенной, за тридевять галактик от Земли, затерялась пока неведомая ученым планета. Кое-где на ее поверхности встречается застывшая лава — вулканы выбросили из недр очередную порцию «свежеприготовленного» технеция. А может быть там и динозавры разгуливают?..

Поделиться:
Популярные книги

Студент

Гуров Валерий Александрович
1. Студент
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Студент

Варлорд

Астахов Евгений Евгеньевич
3. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Варлорд

Как я строил магическую империю

Зубов Константин
1. Как я строил магическую империю
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Как я строил магическую империю

Кодекс Охотника. Книга XII

Винокуров Юрий
12. Кодекс Охотника
Фантастика:
боевая фантастика
городское фэнтези
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XII

Неудержимый. Книга II

Боярский Андрей
2. Неудержимый
Фантастика:
городское фэнтези
попаданцы
5.00
рейтинг книги
Неудержимый. Книга II

Измена

Рей Полина
Любовные романы:
современные любовные романы
5.38
рейтинг книги
Измена

Пенсия для морского дьявола

Чиркунов Игорь
1. Первый в касте бездны
Фантастика:
попаданцы
5.29
рейтинг книги
Пенсия для морского дьявола

Не грози Дубровскому! Том V

Панарин Антон
5. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том V

Утопающий во лжи 3

Жуковский Лев
3. Утопающий во лжи
Фантастика:
фэнтези
рпг
5.00
рейтинг книги
Утопающий во лжи 3

Драконий подарок

Суббота Светлана
1. Королевская академия Драко
Любовные романы:
любовно-фантастические романы
7.30
рейтинг книги
Драконий подарок

Средневековая история. Тетралогия

Гончарова Галина Дмитриевна
Средневековая история
Фантастика:
фэнтези
попаданцы
9.16
рейтинг книги
Средневековая история. Тетралогия

Измена. Возвращение любви!

Леманн Анастасия
3. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Возвращение любви!

Комбинация

Ланцов Михаил Алексеевич
2. Сын Петра
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Комбинация

Кодекс Охотника. Книга V

Винокуров Юрий
5. Кодекс Охотника
Фантастика:
фэнтези
попаданцы
аниме
4.50
рейтинг книги
Кодекс Охотника. Книга V