Чтение онлайн

на главную - закладки

Жанры

О времени, пространстве и других вещах. От египетских календарей до квантовой физики
Шрифт:

Затем в 1816 году английский химик Хамфри Дэви обнаружил, что пары определенных веществ, например алкоголя, соединяются с кислородом значительно легче в присутствии некоторых металлов, например платины. Водород также легче соединяется с кислородом в присутствии платины.

И снова химики начали экспериментировать с платиной. В 1823 году немецкий ученый Йоганн Вольфганг Дёберейнер создал водородный генератор, который при повороте запорного крана выстреливает струю водорода на полоску платиновой фольги. Водород сразу же вспыхивает. Получившуюся «лампу Дёберейнера» можно считать первой зажигалкой.

К сожалению, загрязнения в составе водорода очень быстро портили катализатор, и полоска дорогостоящей платины становилась непригодной к дальнейшему использованию.

В 1831 году английский химик Перегрин Филлипс решил, что если платина ускоряет взаимодействие водорода и алкоголя с кислородом, то почему ей не сделать то же самое для двуокиси серы? Он провел эксперимент и получил патент на открытие. Через несколько лет был открыт метод «отсрочки» порчи катализатора, после чего платину начали с выгодой использовать в производстве серной кислоты, заменив ею селитру Уорда.

В 1836 году эти исследования привлекли внимание шведского химика Йенса Якоба Берцелиуса, являвшегося в первой половине XIX века некоронованным королем химии. Он предложил термины «катализ» и «катализатор» (от греческого «разложить на составные части»). Очевидно, Берцелиус имел в виду такие примеры каталитических реакций, как расщепление больших молекул крахмала на маленькие молекулы сахаров под действием серной кислоты.

Опыты с платиной внесли в концепцию каталитических процессов новую струю. С одной стороны, это был редкий и ценный металл. С другой стороны, благодаря платине люди снова заподозрили, что в реакциях с участием катализатора все-таки не обошлось без волшебных сил.

Разве можно ожидать, что платина тоже станет посредником, как простая селитра?

На первый взгляд ответ должен быть отрицательным. По сравнению с другими известными химическими веществами платина является довольно инертной, при нормальных условиях она не взаимодействует с водородом и кислородом. Тогда как она может заставить водород и кислород взаимодействовать друг с другом?

Если наш метафорический катализатор каменщик, то платина каменщик, плотно упакованный в смирительную рубашку.

Значит, мы снова вернулись к волшебству? К действию молекул на расстоянии?

Химики продолжали искать более прозаическое объяснение. У них возникло подозрение, что инертность платины является кажущейся. Атомы плагины «держатся друг за друга» со всех сторон; их, судя по всему, это вполне устраивает, поэтому в глубоких слоях платина не взаимодействует с водородом и кислородом, как и с другими веществами.

Но на поверхности металла атомы располагаются рядом с воздухом, возле них уже нет других атомов платины со всех сторон, поэтому они хватают недостающие атомы из тех, что оказались вблизи, например, водород. Таким образом, на поверхности металла образуется пленка толщиной в 1 молекулу. Она, разумеется, остается невидимой, и мы продолжаем любоваться гладкой, блестящей поверхностью платины, которая на вид совершенно инертна.

Являясь частью поверхностной пленки, кислород и водород реагируют более активно, чем в состоянии газа. Если предположить, что при реакции кислорода и водорода на поверхности

платины образуется молекула воды, она будет удерживаться слабее, чем молекула кислорода. В тог момент, когда молекула кислорода ударяется в этот участок поверхности, она заменит молекулу воды в пленке. И сразу появится шанс образования еще одной молекулы воды, и т. д.

Таким образом, платина действительно выступает в роли посредника, образуя на поверхности мономолекулярную газообразную пленку.

Также нетрудно показать, как платиновый катализатор может быть испорчен. Представьте, что существуют молекулы, к которым атомы платины будут «прижиматься» сильнее, чем к кислороду. Такие молекулы заместят кислород в поверхностной пленке, но сами не будут вытеснены атмосферными газами. Они останутся на поверхности платины, и каталитическое действие с участием водорода и кислорода прекратится.

Поскольку для образования поверхностного слоя толщиной в 1 молекулу затрачивается очень мало вещества (при разумных размерах поверхности), катализатор довольно быстро портят примеси, которые неизменно присутствуют в рабочей смеси газов.

Если приведенные выше рассуждения верны, то увеличение площади поверхности катализатора при его неизменном весе одновременно повысит его эффективность. Поэтому платиновый порошок, имеющий обширный поверхностный слой, является намного более эффективным катализатором, чем кусок платины того же веса. Значит, мы можем говорить о поверхностном катализаторе.

Но было сказано о поверхностной пленке, которая ускоряет процесс взаимодействия водорода и кислорода. Хотелось бы ликвидировать любые намеки на волшебство.

Для этого следует попять, чего катализатор сделать не может.

В 1870 году американский физик Джозайя Уиллард Гиббс разработал законы термодинамики применительно к химическим реакциям. Он показал, что существует некое количество гак называемой «свободной энергии», которое всегда уменьшается в спонтанной химической реакции, то есть в реакции, которая протекает без поступления энергии.

Так, после начала реакции соединения во/юрода и кислорода она продолжается до тех пор, пока имеются газы — реагенты, а в результате образуется вода. Мы объясняем это тем, что свободная энергия воды меньше, чем свободная энергия газовой смеси. И реакцию взаимодействия водорода и кислорода с образованием воды можно сравнить со скольжением вниз по «энергетическому склону».

Но если все сказанное верно, почему водород и кислород не реагируют между собой, находясь в состоянии газовой смеси? Почему они так долго медлят на верхней ступеньке энергетической лестницы и вступают в реакцию только после нагрева?

Очевидно, что до начала реакции молекул кислорода и водорода, каждая из которых состоит из двух атомов, одна из них должна быть разрушена на отдельные атомы. А для этого необходима дополнительная энергия. Эго и есть верхушка энергетического склона, по которому еще предстоит спуститься. Своего рода «энергетический пригорок». Количество энергии, необходимое для начала химической реакции, называется энергией активации. Эту концепцию впервые выдвинул в 1889 году шведский химик Сванте Август Аррениус.

Поделиться:
Популярные книги

Измена. Право на сына

Арская Арина
4. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на сына

Лорд Системы 8

Токсик Саша
8. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 8

Мастер 7

Чащин Валерий
7. Мастер
Фантастика:
фэнтези
боевая фантастика
попаданцы
технофэнтези
аниме
5.00
рейтинг книги
Мастер 7

Идеальный мир для Лекаря 21

Сапфир Олег
21. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 21

Попала, или Кто кого

Юнина Наталья
Любовные романы:
современные любовные романы
5.88
рейтинг книги
Попала, или Кто кого

(не)Бальмануг. Дочь 2

Лашина Полина
8. Мир Десяти
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
(не)Бальмануг. Дочь 2

Огни Аль-Тура. Желанная

Макушева Магда
3. Эйнар
Любовные романы:
любовно-фантастические романы
эро литература
5.25
рейтинг книги
Огни Аль-Тура. Желанная

Пушкарь. Пенталогия

Корчевский Юрий Григорьевич
Фантастика:
альтернативная история
8.11
рейтинг книги
Пушкарь. Пенталогия

Кодекс Охотника. Книга XXIII

Винокуров Юрий
23. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
5.00
рейтинг книги
Кодекс Охотника. Книга XXIII

Ну привет, заучка...

Зайцева Мария
Любовные романы:
эро литература
короткие любовные романы
8.30
рейтинг книги
Ну привет, заучка...

Большая Гонка

Кораблев Родион
16. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Большая Гонка

Дайте поспать! Том II

Матисов Павел
2. Вечный Сон
Фантастика:
фэнтези
постапокалипсис
рпг
5.00
рейтинг книги
Дайте поспать! Том II

Я снова не князь! Книга XVII

Дрейк Сириус
17. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я снова не князь! Книга XVII

Месть за измену

Кофф Натализа
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Месть за измену