Чтение онлайн

на главную

Жанры

Шрифт:

Сначала определялись расстояния до наиболее близких скоплений способами, не вызывающими никаких сомнений. Зная эти расстояния, по видимой угловой величине скоплений вычисляли их линейные размеры. Оказалось, что линейные размеры и блеск главных звездных скоплений одного и того же вида одинаковы. Тогда, естественно, решили, что у скоплений данного вида видимый блеск их главных звезд зависит только от их расстояния, убывая обратно пропорционально квадрату расстояния. Зная же истинный блеск таких звезд и сравнивая его с видимым блеском звезд, который легко измерить, нетрудно подсчитать расстояние от далеких скоплений.

По вычисленным таким образом расстояниям далеких скоплений и по их видимым угловым диаметрам и определили их линейные размеры. И вот они,

оказывается, растут с удалением скопления от нас!

Что же могло тут сказаться? Если бы найденные расстояния далеких скоплений были преувеличены, и тем больше преувеличены, чем больше сами расстояния, то результат был бы именно такой: линейные диаметры оказались бы тоже преувеличенными и тем больше, чем больше расстояние. Ведь на видимом угловом диаметре расстояние никак не может сказаться. Но вот на видимом блеске звезд расстояние может сказаться, если в пространстве поглощается свет. Чем дальше скопление, тем больший путь в поглощающей среде проходят его лучи и тем сильнее уменьшается его блеск. Мы же, не догадываясь о поглощении, относили скопление дальше, чем оно от нас находится в действительности. Так Трюмплер окончательно установил, что в нашей звездной системе есть поглощающая материя; она концентрируется к плоскости Млечного Пути, представляя собой довольно тонкий слой. Впоследствии его толщину оценили в 600 световых лет. Свет от светил, находящихся внутри этого слоя (подобно нашей Солнечной системе), испытывает в нем сильное поглощение (например, галактические скопления). Наоборот, свет от светил, находящихся вне этого слоя (например, шаровые звездные скопления), испытывает очень малое поглощение, потому что их свет внутри поглощающей среды проходит только небольшую часть своего пути. Поэтому-то при наблюдениях шаровых звездных скоплений существование поглощающей среды осталось незамеченным.

Нашли, что на каждые 3000 световых лет вблизи плоскости Млечного Пути видимый блеск звезд ослабляется примерно на 0,4 звездной величины, а блеск звезд на фотографиях - даже на 0,7 звездной величины; в самой плоскости Млечного Пути ослабление блеска еще больше.

Более поздние исследования выявили, что межзвездная среда распределена в пространстве очень неравномерно: в одних местах она плотнее, в других - реже. Величина поглощения, ослабляющего видимый блеск звезд, зависит и от расстояния и от направления. По некоторым направлениям в плоскости Млечного Пути поглощение доходит до нескольких звездных величин на каждые триста световых лет расстояния.

Так как изучение строения нашей звездной системы основано на изучении числа и яркости звезд, а последняя искажена поглощением света в пространстве и в разных направлениях по-разному, то приходится это поглощение постоянно изучать и учитывать. Задача изучения строения звездной системы из-за существования поглощения света стала очень хлопотливой и сложной. Звездную систему приходится изучать, так сказать, по кусочкам, шаг за шагом, в каждом направлении отдельно.

По-видимому, это общее поглощение света частично вызвано некоторой непрерывной пылевой средой, заполняющей пространство между звездами. Частично же его вызывают многочисленные темные туманности, расположенные далеко от нас и проектирующиеся друг на друга.

Общее поглощение света межзвездной пылью сопровождается также и избирательным поглощением света. Чем ближе к плоскости Млечного Пути расположены звезды и чем они дальше от нас, тем они краснее благодаря избирательному поглощению. За последние годы фотографирование на пластинках, чувствительных к красным лучам, выявило целые области неба - целые звездные облака Млечного Пути, имеющие красноватый цвет из-за поглощения света. На обычных фотопластинках, не чувствительных к красным лучам, эти далекие облака слабых звезд выходят слабо, на пластинках же, воспринимающих красный цвет, они получаются гораздо ярче, и в них видно больше звезд.

Поглощающее вещество расположено в звездной системе Млечного Пути не тонким, резко ограниченным слоем, но по мере приближения к плоскости Млечного Пути плотность его меняется так же, как плотность земной атмосферы в зависимости от высоты.

Центр нашей звездной системы, содержащий наиболее густые облака звезд и расположенный в направлении созвездия Стрельца в Млечном Пути, заслонен от нас поглощающей материей. Не будь ее, в этом направлении звездные облака Млечного Пути сияли бы почти ослепительным светом.

Темная «развилка» Млечного Пути, делящая его на два рукава, начинающихся в созвездии Лебедя и соединяющихся снова в южном полушарии неба, также образована скучиванием темных туманностей и не представляет собой гигантской прорехи в нашей звездной системе. В направлении этой развилки, так же как и по тем направлениям, где поглощение особенно велико, мы не видим далеких звездных образований, расположенных за пределами нашего Млечного Пути. Мы не видим там ни шаровых звездных скоплений, ни так называемых спиральных звездных систем, о которых мы узнаем в главе 9. Их мешает видеть темная межзвездная материя. Однако местами встречаются редкие «окна прозрачности» в пыльной толще Млечного Пути, которые напоминают полыньи в ледяных массивах Арктики или окна чистой воды в старом зазеленевц^ем пруду. В «окна прозрачности» видны звездные системы, лежащие вне пределов нашей собственной звездной системы. Автором этой книжки обнаружены еще так называемые «коридоры видимости», в которых благодаря их прозрачности только и видны далекие звезды нашей звездной системы, хотя и не видно других звездных систем, еще более далеких. А по направлениям, перпендикулярным к плоскости Млечного Пути, например в созвездии Волос Вероники, пространство почти совершенно прозрачно. Там мы свободно видим отдаленнейшие уголки Вселенной, лежащие далеко-далеко за пределами нашей звездной системы.

Как известно, свет - это электромагнитные колебания, причем в световом луче колебания происходят перпендикулярно к направлению распространения луча. В обычном луче направления этих колебаний непрерывно и беспорядочно меняются. При отражении света от некоторых тел происходит упорядочивание световых колебаний: какое-либо направление световых колебаний становится преобладающим. Это явление называется поляризацией света, а луч с упорядоченным направлением колебаний -поляризованным. С помощью приборов можно узнать, поляризован ли свет.

Свет звезды, прошедший через пылевую среду, поляризован тем больше, чем она дальше.

Поляризация света звезд межзвездной пылью указывает на то, что эти пылинки не круглые, а продолговатые, и что они располагаются в пространстве не хаотично, а вблизи плоскости Млечного Пути. Что же их вынуждает к этому? По-видимому, это происходит благодаря наличию в межзвездном пространстве магнитного поля. Так изучение влияния межзвездной пыли на свет звезд привело к открытию магнитных сил в межзвездном пространстве.

Рис. 113. Слой поглощающего вещества вблизи экваториальной плоскости далеких звездных систем

Пылевое вещество, поглощающее свет, есть не только в нашей звездной системе. Мы находим его в каждой из достаточно обширных систем такого рода, как бы далеко от нас они ни находились. В звездных системах, подобных нашей Галактике, мы обнаруживаем на фотографиях поглощающее свет вещество, концентрирующееся опять-таки к плоскости их симметрии. Лучше всего это видно на фотографиях тех из них, которые повернуты к нам ребром и выглядят, как линза или как веретено. На многих таких фотографиях видна резкая узкая темная полоса, как бы рассекающая эту линзу или веретено пополам. Нет никакого сомнения в том, что эта темная полоска есть не что иное, как скопление темных туманностей, состоящих из космической пыли, плотность которых растет с приближением к экваториальной плоскости этих систем. Они поглощают свет погруженных в них мириад звезд так же, как они делают это в нашей звездной системе, и создаваемая ими чернота ясно говорит о том, как велико это поглощение.

Поделиться:
Популярные книги

Попала, или Кто кого

Юнина Наталья
Любовные романы:
современные любовные романы
5.88
рейтинг книги
Попала, или Кто кого

Вернуть невесту. Ловушка для попаданки 2

Ардова Алиса
2. Вернуть невесту
Любовные романы:
любовно-фантастические романы
7.88
рейтинг книги
Вернуть невесту. Ловушка для попаданки 2

Жребий некроманта 2

Решетов Евгений Валерьевич
2. Жребий некроманта
Фантастика:
боевая фантастика
6.87
рейтинг книги
Жребий некроманта 2

Энфис 3

Кронос Александр
3. Эрра
Фантастика:
героическая фантастика
рпг
аниме
5.00
рейтинг книги
Энфис 3

Корсар

Русич Антон
Вселенная EVE Online
Фантастика:
боевая фантастика
космическая фантастика
6.29
рейтинг книги
Корсар

Черный Маг Императора 8

Герда Александр
8. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 8

Идеальный мир для Лекаря 11

Сапфир Олег
11. Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 11

Убивать чтобы жить 3

Бор Жорж
3. УЧЖ
Фантастика:
героическая фантастика
боевая фантастика
рпг
5.00
рейтинг книги
Убивать чтобы жить 3

Лорд Системы 12

Токсик Саша
12. Лорд Системы
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Лорд Системы 12

Приручитель женщин-монстров. Том 3

Дорничев Дмитрий
3. Покемоны? Какие покемоны?
Фантастика:
юмористическое фэнтези
аниме
5.00
рейтинг книги
Приручитель женщин-монстров. Том 3

Попытка возврата. Тетралогия

Конюшевский Владислав Николаевич
Попытка возврата
Фантастика:
альтернативная история
9.26
рейтинг книги
Попытка возврата. Тетралогия

Последний Паладин. Том 4

Саваровский Роман
4. Путь Паладина
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Последний Паладин. Том 4

Возвышение Меркурия

Кронос Александр
1. Меркурий
Фантастика:
героическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия

Играть, чтобы жить. Книга 1. Срыв

Рус Дмитрий
1. Играть, чтобы жить
Фантастика:
фэнтези
киберпанк
рпг
попаданцы
9.31
рейтинг книги
Играть, чтобы жить. Книга 1. Срыв