Одураченные случайностью
Шрифт:
Эта нелинейная динамика имеет книжное название - теория хаоса, что не совсем верно потому, что это не имеет никакого отношения к хаосу. Теория хаоса интересуется, прежде всего, функциями, в которых маленькие входные изменения могут вести к непропорциональной реакции. Модели популяции, например, могут приводить к взрывному росту или к исчезновению вида, в зависимости от очень маленьких различий в популяции в отправной временной точке. Другая популярная научная аналогия - погода, которая показывает, что простое трепетание крыльев бабочки в Индии может вызвать ураган в Нью-Йорке. Но классики могут предложить свою лепту также: Паскаль (тот же самый из главы 7) сказал, что если бы нос Клеопатры был слегка короче, судьба мира изменилась бы. Клеопатра имела миловидную внешность с тонким, удлиненным носом, который заставил Юлия Цезаря и его преемника Марка Антония влюбиться в нее (здесь интеллектуальный
Введение случайности
Вещи могут стать более интересными, когда случайность входит в игру. Вообразите комнату ожидания, полную актерами в очереди на прослушивание. Число актеров, которые победят, очевидно, невелико и они будут теми, наблюдаемыми публикой, представителями профессии, как мы видели в нашем обсуждении пристрастия выживания. Победители бы пошли в БелЭйр, чувствуя необходимость приобрести некоторую сноровку в потреблении предметов роскоши и, возможно, вследствие распущенного и неритмичного образа жизни, флиртовать со злоупотреблением веществ. Относительно других (большинство), мы можем вообразить их судьбу: проведение жизни, подавая кофе в соседнем 51агЪис1« и борясь с биологическими часами, между прослушиваниями
Можно спорить, что актер, который получает ведущую роль, которая катапультирует его в славу и дорогие плавательные бассейны, имеет некоторые навыки, которых нет у других, некоторое обаяние или определенную физическую черту, которая была совершенной спичкой для такой карьеры. Я прошу различать. Победитель может иметь некоторые действующие навыки, но такие же имеют и все другие, иначе они не были бы в комнате ожидания.
Это интересный признак славы, что она имеет свою собственную динамику. Актер становится известным некоторым частям публики потому, что он известен другим слоям публики Динамика такой славы следует за вращающейся спиралью, которая, Возможно, началась в момент прослушивания, поскольку выбор мог быть вызван некоей глупой деталью, которая удовлетворила настроение экзаменатора в тот день. Не влюбись экзаменатор в предыдущий день в человека с подобно звучащей фамилией и наш выбранный актер из той специфической, выборочной истории, будет подавать кофе в происшедшей типовой истории.
Учимся печатать
Исследователи часто используют пример клавиатуры, чтобы описать порочную динамику выигрышей и потерь в экономике и проиллюстрировать, что заключительный результат очень часто является незаслуженным. Договоренность о расположении букв на клавиатуре пишущей машинки - пример успеха наименее заслуживающего метода. Поскольку наши пишущие машинки имеют порядок букв на клавиатуре, устроенный неоптимальным способом, фактически, в такой неоптимальной манере, которая замедляет печатание, чтобы избегнуть затыкания ленты, поскольку они были разработаны в менее электронные времена, вместо того, чтобы сделать работу легкой. Поэтому, когда мы начали делать лучшие пишущие машинки и компьютеризировали текстовые процессоры, было сделано несколько попыток рационализировать компьютерную клавиатуру, но напрасно. Люди были обучены на старой клавиатуре и их привычки были слишком тяжелы для изменения. Люди покровительствуют тому, что другие люди любят делать. Принуждение к рациональной динамике процесса было бы излишним, нет, невозможным. Это называется результатом, зависящим от пути, и мешало многим математическим попыткам в моделировании поведения.
Очевидно, что возраст информации, гомогенизировав наши вкусы, делает несправедливость даже более острой - те, кто выигрывают, захватывают почти всех клиентов. Пример, который возбуждает больше всего, как наиболее захватывающий удачливый успех - это пример изготовителя программного обеспечения Микрософт и ее унылого основателя Билла Гейтса. В то время, как трудно отрицать, что Гейтс - человек высоких личных стандартов, этики работы и незаурядного интеллекта, но лучший ли он? Заслуживает ли он это? Ясно, что нет. Большинство людей вооружено его программным обеспечением (подобно мне самому) потому, что другие люди оборудованы его программным обеспечением, вполне круговой эффект (экономисты называют это "внешностями сети"). Никто никогда не утверждал, что это лучшее программное обеспечение. Большинство конкурентов Гейтса яростно ревнуют к его успеху. Они взбешены тем фактом, что он сумел выиграть так много в то время, как многие из них борются за выживание своих компаний.
Такие идеи идут супротив классических экономических
Математический подход к проблеме вполне упорядочен. В то время, как в обычных моделях (типа, хорошо известных броуновских случайных блужданий, используемой в финансах) вероятность успеха не изменяется с каждым возрастающим шагом, но только накопленное богатство, Артур предлагает модели, типа, процесса Полна, который является математически очень трудным, чтобы с ним работать, но может быть легко понят при помощи симулятора Монте-Карло. Процесс Полна может быть представлен следующим образом: предположим урну, первоначально содержащую равные количества черных и красных шаров. Вы должны каждый раз предполагать, какой цвет вы вытащите прежде, чем потянетесь за шаром. Здесь игра подстроена. В отличие от обычной урны, вероятность правильного предположения зависит от прошлого успеха так, что вы улучшаете или ухудшаете предположения в зависимости от прошлого результата. Таким образом, вероятность победы увеличивается после прошлых побед, или уменьшается после прошлых потерь. Моделируя такой процесс, можно увидеть огромную вариацию результатов, с удивительными успехами и большим количеством неудач (что мы назвали смещением).
Сравните такой процесс с теми, которые более обычно моделируются, то есть урной, из которой игрок делает выемки с заменой. Скажем, вы играли в рулетку и выиграли. Это увеличило бы ваши возможности выиграть снова?
Нет. В процессе Полна, увеличило бы. Почему это так трудно выразить математически? Потому, что понятие независимости (то есть, когда следующее испытание, не зависит от предыдущего результата) нарушено. Независимость - вот требование для работы с (известной) математикой вероятности.
Что пошло не так, как надо с развитием экономики, как науки? Ответ: существовала группа интеллектуальных людей, которые чувствовали необходимость использовать математику только, чтобы сообщить себе, что они были строги в своих размышлениях, что это была их наука. Кто-то в большой спешке решил представить математические методы моделирования (виновники: Леон Валрас, Джерард Дебрю, Поль Самуельсон) без того, чтобы понять факт, что либо класс математики, которую они использовали, был слишком ограничен для класса проблем, с которыми они имели дело, либо, возможно, что точность языка математики могла заставить людей поверить, что они имеют решения, когда, в действительности, они не имели ни одного (вспомним Поппера и стоимость восприятия науки слишком серьезно). Действительно, математика, с которой они имели дело, не работала в реальном мире, возможно потому, что мы нуждаемся в более сложных классах процессов - и они отказались принять факт, что никакая математика, вообще, вероятно, не была бы лучше.
Так называемые теоретики комплексности пришли на выручку. Много шума было произведено работами ученых, которые специализировались на нелинейных количественных методах - их Меккой является Институт Санта-Фе около городка Санта-Фе, в Нью-Мексико. Ясно, что эти ученые много работают, пытаясь обеспечить нас замечательными решениями в физических науках и лучшими моделями в смежных социальных науках (хотя ничего удовлетворительного там все же нет). И если они, в конечном счете, не преуспеют, это будет просто потому, что математика может оказать только вторичную помощь в нашем реальном мире. Обратите внимание, что другое преимущество моделирования методом Монте-Карло состоит в том, что мы можем получить результаты там, где математика нас подводит и может быть бесполезной. Освобождая нас от уравнений, метод освобождает нас от ловушек низшей математики. Как я сказал в главе 4, математика - это просто способ мышления и медитации, не больше, в нашем мире случайности.