Чтение онлайн

на главную

Жанры

Опционы: Волатильность и оценка стоимости. Стратегии и методы опционной торговли
Шрифт:

То же можно сказать и об игре в рулетку. На колесе рулетки 38 ячеек с номерами 1–36, 0 и 00 [8] . Предположим, что казино предлагает игроку выбрать один из номеров. Если выпадает номер игрока, то он получает 36 долл., если любой другой номер – ничего. Каким будет ожидаемый доход игрока в этом случае? Шарик может с равной вероятностью оказаться в любой из 38 ячеек, но только одна из них принесет игроку 36 долл. Если мы разделим единственную возможность выиграть 36 долл. на 38 ячеек, то получим 36/38 = 0,9474, или около 95 центов. Заплатив 95 центов за возможность выбрать ячейку, игрок может ожидать, что в долгосрочной перспективе он, по крайней мере, ничего не проиграет.

8

Мы говорим о рулетке с 38 ячейками, распространенной

в США. В некоторых странах бывают рулетки без ячейки 00. Это, конечно, меняет условия игры.

Конечно, ни одно казино не разрешит игроку сделать ставку за 95 центов, поскольку при этом оно ничего не заработает. В реальном мире, чтобы сделать ставку, игрок должен заплатить сумму, превышающую ожидаемый доход, обычно 1 долл. Пять центов разницы между ценой ставки и ожидаемым доходом представляют собой потенциальную прибыль или преимущество казино. В долгосрочной перспективе казино может рассчитывать на получение 5 центов с каждого доллара, заплаченного за возможность сделать ставку.

Учитывая это, желающий выиграть игрок должен поменяться местами с казино, чтобы самому продавать ставки. Тогда он будет получать 5 центов, продавая за 1 долл. ставки, которые стоят 95 центов. Есть и другой вариант – найти такое казино, где можно купить право на игру дешевле, чем ожидаемый доход в 95 центов, скажем, за 88 центов. Тогда у игрока будет преимущество перед казино в размере 7 центов.

Теоретическая стоимость

Теоретическая стоимость предложения о сделке – это цена, которую одна сторона должна заплатить другой для того, чтобы при многократном повторении такой сделки обе стороны имели нулевой результат (иными словами, это цена, при которой для обеих сторон выполняется условие безубыточности). До сих пор единственным фактором, который учитывался при определении стоимо сти сделки, был ожидаемый доход. Исходя из него, мы нашли, что справедливая цена одной ставки в рулетку составляет 95 центов. Однако иногда необходимо учитывать и другие факторы.

Предположим, что в нашем примере с рулеткой казино решило слегка изменить условия игры. Теперь игрок может сделать ставку за сумму, равную ожидаемому доходу, т. е. за 95 центов, которые, как и раньше, в случае проигрыша переходят к казино. Однако если игрок выигрывает, то казино выплачивает 36-долларовый выигрыш через два месяца. Будет ли теперь сделка безубыточной и для игрока, и для казино?

Откуда взялись те 95 центов, которые игрок поставил в рулетку? Надо полагать, что он достал их из своего кармана, однако до этого они были сняты со сберегательного счета. Поскольку выигрыш будет получен лишь через два месяца, игрок потеряет проценты с 95 центов за два месяца. При годовой процентной ставке 12 % (1 % в месяц) упущенная выгода составит 95 центов x 2 %, т. е. около 2 центов. Если игрок покупает ставку за 95 центов (эквивалент ожидаемого дохода), то он теряет 2 цента из-за затрат на поддержание позиции – затрат, связанных с тем, что доход от его инвестиций поступит через два месяца. Казино, в свою очередь, помещает 95 центов на депозит и через два месяца получает процентный доход в 2 цента.

В таких условиях теоретическая стоимость ставки равна ожидаемому доходу в размере 95 центов минус 2 цента затрат на поддержание позиции, т. е. примерно 93 центам. Если игрок заплатит 93 цента за ставку сегодня и получит выигрыш через два месяца, то в долгосрочной перспективе ни он, ни казино не будут иметь никакой прибыли.

Итак, два важнейших фактора, учитываемые при планировании инвестиций, – это ожидаемый доход и затраты на поддержание позиции. Однако существуют и другие аспекты. Допустим, казино решило предоставить игроку в следующие два месяца бонус в 1 цент. Этот бонус суммируется с прежней теоретической стоимостью в 93 цента и дает новую теоретическую стоимость, равную 94 центам. Бонус подобен дивиденду, выплачиваемому акционерам компании. Таким образом, дивиденды – это еще один фактор, который должен учитываться при оценке опционов на акции.

Биржам, скорее всего, не понравится то, что их сравнивают с казино, а опционную торговлю – с азартной игрой. Но мы занимаемся не оценкой моральных аспектов, а лишь констатируем факт: законы теории вероятностей, которые позволяют казино оценивать результаты игр со случайным исходом и устанавливать соответствующие правила, дают трейдеру возможность оценивать опционы.

Понятие зависящей от вероятности теоретической стоимости используется во многих сферах бизнеса. Те, кому не нравится сравнение с азартной игрой, могут вспомнить об исходном предназначении опционов и считать их своего рода страховыми полисами, требующими уплаты

страховой премии. Используя статистические данные и теорию вероятностей, актуарий страховой компании пытается рассчитать вероятность того, что страховой полис окажется прибыльным для компании. Затем он подставляет в формулу проценты, под которые страховая компания будет размещать премии, и получает значение теоретической стоимости страхового полиса. Затем полис предлагают потенциальным клиентам по более высокой цене, в которую заложена прибыль страховой компании.

Цель оценки опциона состоит в том, чтобы, используя математические методы, определить теоретическую стоимость. Зная ее, трейдер может принять обоснованное решение о том, переоценивает или недооценивает рынок опцион и достаточна ли ожидаемая теоретическая прибыль для того, чтобы выйти на рынок и совершить сделку.

Пара слов о моделях

Прежде чем продолжить, следует сделать несколько общих замечаний о моделях.

Модель – это уменьшенное или более легкое в обращении представление реального мира. Модель может быть материальной, например модель самолета или здания, или же математической, например формула. В любом случае модели создают для облегчения понимания мира, в котором мы живем. Однако неразумно и даже опасно считать, что модель полностью идентична реальному миру, который она представляет. Модель может быть очень похожей, но никогда не отражает в точности всех особенностей реального мира.

Все модели строятся на допущениях относительно реального мира. В математические модели вводятся коэффициенты, количественно характеризующие данные допущения. Если мы заложим в модель неправильную исходную информацию, то получим неправильную картину реального мира. Принцип информатики «мусор на входе – мусор на выходе» (garbage in, garbage out) здесь полностью справедлив.

Эти общие замечания в полной мере относятся и к моделям, в рамках которых выводятся формулы теоретической стоимости опционов. Такие модели лишь частные представления о том, как оценивать опционы в определенных условиях. Поскольку как сама модель, так и заложенные в нее количественные параметры могут быть неверными, нет никакой гарантии, что полученные значения окажутся точными или вообще похожими на реальные рыночные цены.

На самом деле трейдеры по-разному оценивают полезность математиче ских моделей и выводимых из них оценок стоимости опционов. Одни считают, что это своего рода «фокусы» с формулами, которые не имеют никакого отношения к реальному миру. Другие полагают, что таблица со значениями теоретической стоимости опционов решает все их проблемы. Истина, по-видимому, находится где-то посередине.

Начинающий опционный трейдер подобен тому, кто впервые входит в темную комнату. Не имея ориентиров, он идет на ощупь и, если повезет, может наткнуться на то, что ищет. Трейдер, знакомый с основами теории цено образования опционов, входит в ту же комнату со свечой в руке. Он видит, как расставлена мебель, но скудный свет свечи не позволяет разглядеть детали. Кроме того, мерцание пламени искажает восприятие. Тем не менее со свечой шансы найти то, что ищешь, выше.

Реальные проблемы с моделями и формулами стоимости опционов возникают у трейдера, когда он приобретает определенный опыт. По мере обретения уверенности он заключает все более крупные сделки. И вот тут невозможность разглядеть детали в комнате вкупе с искажениями, вызванные мерцанием пламени, становятся более значимыми. Теперь неправильная интерпретация увиденных образов может привести к финансовой катастрофе, поскольку цена ошибки многократно возрастает.

Самое разумное – использовать теорию, но с полным пониманием того, что теория может, а что нет. Начинающие опционные трейдеры обнаружат, что модели и формулы – это ценнейшие инструменты анализа цен опционов. Из-за информации, которую они дают, подавляющее большинство успешных трейдеров используют в своей работе тот или иной способ оценки теоретической стоимости опционов. Однако если опционный трейдер хочет извлечь из такого подхода максимальную пользу, он должен представлять не только его сильные стороны, но и ограничения. В противном случае он будет мало отличаться от того, кто блуждает в полной темноте [9] .

9

Эти ограничения обсуждаются в двух статьях: Figlewski, Stephen, «What Does an Option Pricing Model Tell Us about Option Prices?», Financial Analyst Journal, September/October 1989, рр. 12–15, Black, Fischer, «Living Up to the Model», Risk, Vol. 3, No. 3, March 1990, рр. 11–13.

Поделиться:
Популярные книги

Без шансов

Семенов Павел
2. Пробуждение Системы
Фантастика:
боевая фантастика
рпг
постапокалипсис
5.00
рейтинг книги
Без шансов

Назад в ссср 6

Дамиров Рафаэль
6. Курсант
Фантастика:
попаданцы
альтернативная история
6.00
рейтинг книги
Назад в ссср 6

Идеальный мир для Лекаря 13

Сапфир Олег
13. Лекарь
Фантастика:
фэнтези
юмористическое фэнтези
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 13

Не грози Дубровскому! Том V

Панарин Антон
5. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том V

Морозная гряда. Первый пояс

Игнатов Михаил Павлович
3. Путь
Фантастика:
фэнтези
7.91
рейтинг книги
Морозная гряда. Первый пояс

Лишняя дочь

Nata Zzika
Любовные романы:
любовно-фантастические романы
8.22
рейтинг книги
Лишняя дочь

Не грози Дубровскому! Том II

Панарин Антон
2. РОС: Не грози Дубровскому!
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Не грози Дубровскому! Том II

На границе империй. Том 9. Часть 3

INDIGO
16. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 3

Мастер 2

Чащин Валерий
2. Мастер
Фантастика:
фэнтези
городское фэнтези
попаданцы
технофэнтези
4.50
рейтинг книги
Мастер 2

Его маленькая большая женщина

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.78
рейтинг книги
Его маленькая большая женщина

Царь поневоле. Том 2

Распопов Дмитрий Викторович
5. Фараон
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Царь поневоле. Том 2

Кодекс Крови. Книга I

Борзых М.
1. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга I

Второй Карибский кризис 1978

Арх Максим
11. Регрессор в СССР
Фантастика:
попаданцы
альтернативная история
5.80
рейтинг книги
Второй Карибский кризис 1978

Ведьма

Резник Юлия
Любовные романы:
современные любовные романы
эро литература
8.54
рейтинг книги
Ведьма