Чтение онлайн

на главную

Жанры

Оптический флюорит
Шрифт:

Основными линейными дефектами являются дислокации, образующиеся в результате сдвига атомных слоев друг относительно друга на одно межатомное расстояние. Дислокации могут быть краевыми, представляющими собой край «оборванной» в результате сдвига атомной плоскости, и винтовыми (фото 1, см. вкл.), в которых линия, последовательно соединяющая атомы один за другим, является винтовой. Вблизи дислокации кристалл сильно деформирован, причем если ширина деформированной зоны соответствует размерам точечного дефекта, то длина ее может достигать миллионов межатомных расстояний — дислокация как бы пронизывает кристалл насквозь. Плотность дислокаций, определяемая как число дислокационных линий, пересекающих площадку в 1 см2 в кристалле, может достигать в сильно деформированных кристаллах 1012. В хороших оптических кристаллах фтористого кальция она составляет 104

и менее на 1 см2. Плотностью дислокаций, их распределением и перемещением внутри кристалла определяются механические свойства флюорита.

Объемными дефектами являются блочность, мозаичность, широко проявляющиеся как на природных, так и на искусственных кристаллах флюорита (фото 2, см. вкл.), участки с внутренними напряжениями, скопления включений и т. п.

Дефектность структуры флюорита оказывает большое влияние на его оптические свойства. Примеси редкоземельных элементов, вакансии и другие точечные дефекты приводят к снижению пропускания в УФ-области спектра, появлению полос поглощения в видимом диапазоне и окрашенности кристаллов.

Природа разнообразной окраски и люминесценции флюорита детально рассмотрена в ряде работ [Пшибрам, 1959; Архангельская, 1970; Марфунин, 1974, 1975; Платонов, 1976; Таращан, 1978]. Простейшим центром окраски является F– центр (Farbe, нем. — цвет), представляющий собой вакансию отрицательно заряженного иона (аниона), захватившую электрон. Поглощение энергии F– центром соответствует переходу F– электрона с одного уровня на другой.

Величина поглощенной энергии Е = Е2—Е1 принимает не непрерывные значения, а «квантуется» — поглощение происходит дискретными порциями, квантами энергии hv: E = hv, где h — постоянная Планка, равная 6,626•10– 34 Дж•с; v — частота, с– 1. Вместо частоты используется волновое число, обратное длине волны: v' = 1/, (см– 1), которое связано с частотой отношением v' = v/c, где с — скорость света, м/с.

Таким образом, E = hcv' = hc1/. Из этого уравнения видно, что чем больше величина поглощенного кванта, тем меньше длина волны, соответствующая поглощению света веществом. Таким образом, спектральное положение F– полосы определяет окраску кристалла.

Первые эксперименты по искусственному окрашиванию флюорита были выполнены Л. Вёлером в 1905 г. Он окрасил кристалл флюорита в синий цвет, нагревая его в парах кальция. Впоследствии эксперименты по аддитивному окрашиванию природного флюорита провели Г. Хаберландт и Е. Мольво. В спектрах поглощения таких кристаллов присутствуют две полосы поглощения — 375 (-полоса) и 520 нм (-полоса) — так называемый спектр Мольво, которые отождествляются с поглощением на F– центрах. Было установлено, что при аддитивном окрашивании в кристалле возникает избыточное, по сравнению со стехиометрическим составом, содержание атомов щелочного металла (обычно порядка 1016—1019 атомов на 1 см3). Это, в свою очередь, приводит к избытку свободных электронов, которые, перемещаясь по кристаллу, захватываются анионными вакансиями с образованием F– центров. Теоретические расчеты также дают количественное соответствие между величиной полного спектрального поглощения в F– полосе и тем избыточным количеством щелочного металла, которое устанавливается химическим анализом окрашенного кристалла. Кроме того, известно, что плотность аддитивно окрашенных кристаллов флюорита обычно меньше, чем у неокрашенных, за счет присутствия вакансий, однако твердость их выше.

Другим методом искусственного создания центров окраски является облучение кристаллов жестким излучением — рентгеновскими, -лучами, частицами высоких энергий. Активация центров окраски происходит и в природных условиях.

В кислородсодержащих кристаллах флюорита с высоким содержанием анионных вакансий после радиационного окрашивания П. П. Феофилов обнаружил две полосы поглощения — 370 и 560 нм, которые он отождествил с F2– центрами, представляющими собой парные анионные вакансии с двумя локализованными на них электронами. Такие же центры были обнаружены и в кристаллах SrF2.

В природных кристаллах флюорита обычно наблюдаются сложные центры окраски, представляющие собой агрегаты из двух, трех и четырех примыкающих друг к другу элементарных F-центров. Соответственно они обозначаются: F2– , F3– и F4центры или М (F2– центр), R1 и R2 (F3– центр), N (F4– центр). В природных условиях образованию F-агрегатных центров способствует диффузия дефектов решетки с их последующей агрегацией в процессе роста и дальнейшего существования кристалла в изменяющихся температурных и радиационных полях. Такие сложные центры наиболее устойчивы к термическому обесцвечиванию. Они в противоположность простым F-центрам, как бы пройдя «естественный отбор», чаще наблюдаются в природных кристаллах.

Описанные центры окраски во флюорите являются по своей природе электронными. Кроме них, существуют дырочные центры окраски, которые отождествляются с ионами фтора, утратившими электрон, — F0. Эти центры устойчивы только при низких температурах.

Кроме электронно-дырочных центров, в объяснении окраски флюорита определенную роль играют примесные дефекты. Это прежде всего дефекты, связанные с внедрением ионов редкоземельных элементов в структуру флюорита. Причем роль двух- и трехвалентных ионов в окраске существенно различна в силу специфических особенностей их энергетического состояния. В спектрах CaF2 — TR3+ полосы поглощения, соответствующие (f—d)-переходам в пределах внутренней, защищенной от внешних влияний оболочки, попадают в далекую, за пределами видимой, УФ-область спектра. В видимой и прилегающей к ней части спектры TR3+– ионов, обусловленные (f—f)-переходами, имеют линейчатый характер, т. е. состоят из серии очень узких линий. Поэтому влияние ионов TR3+ на цвет флюорита практически исключается, тем более что концентрация редкоземельных элементов, а следовательно, и интенсивность полос поглощения незначительные.

Рис. 5. Спектр поглощения (1) и люминесценции (2) кристалла флюорита зеленой окраски

1 — при комнатной температуре; 2 — при —160° С

Рис. 6. Кривая термолюминесценции флюорита с полосами излучения на различных центрах

По-другому проявляют себя ионы TR2+. Они имеют широкие интенсивные полосы поглощения, соответствующие (f—d)-переходам и расположенные в видимой и ближней УФ-области спектра. Узкие слабые полосы (f—f)-переходов полностью перекрываются первыми, и поэтому окраска целиком определяется широкими полосами поглощения TR2+.

Наиболее значительное влияние на окраску флюорита оказывают Sm2+, Eu2+, Dy2+, Yb2+. Полосы поглощения других TR2+– ионов располагаются в ИК-области спектра.

П. П. Феофиловым [1956] было показано, что зеленая окраска кристаллов флюорита обусловлена двухвалентным самарием. В видимой области спектра у кристаллов CaF2—Sm2+ фиксируются две интенсивные полосы поглощения: ~425 и ~630 нм (рис. 5). В определенных условиях ионы могут переходить из одного валентного состояния в другое, вызывая тем самым изменение окраски кристалла. На этом основано окрашивание кристаллов с помощью -облучения и, наоборот, их обесцвечивание при нагревании.

Значительное влияние на оптические свойства флюорита оказывает присутствие кислорода в его структуре. Кислородсодержащие кристаллы имеют интенсивное поглощение начиная с 200—220 нм, поэтому непригодны для изготовления оптических деталей к приборам, предназначенным для вакуумной УФ-области. При этом O2-, внедряясь в структуру, размещается в ближайшем к TR3+ узле анионной подрешетки, представляя собой одиночный ион или образуя диполи с анионными вакансиями VF. С присутствием таких ассоциированных пар О2-—2VF связаны появление красно-фиолетовой окраски и пурпурно-красная люминесценция облученных кристаллов флюорита. 2VF– центры такого типа называются «красными» М-центрами. Во флюорите П. Л. Смолянским были установлены и «синие» М-центры, связанные с присутствием Na+.

Поделиться:
Популярные книги

Соль этого лета

Рам Янка
1. Самбисты
Любовные романы:
современные любовные романы
6.00
рейтинг книги
Соль этого лета

Ну, здравствуй, перестройка!

Иванов Дмитрий
4. Девяностые
Фантастика:
попаданцы
альтернативная история
6.83
рейтинг книги
Ну, здравствуй, перестройка!

Золушка вне правил

Шах Ольга
Любовные романы:
любовно-фантастические романы
6.83
рейтинг книги
Золушка вне правил

Я – Орк

Лисицин Евгений
1. Я — Орк
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я – Орк

Последний попаданец 12: финал часть 2

Зубов Константин
12. Последний попаданец
Фантастика:
фэнтези
юмористическое фэнтези
рпг
5.00
рейтинг книги
Последний попаданец 12: финал часть 2

Раб и солдат

Greko
1. Штык и кинжал
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Раб и солдат

Измена. (Не)любимая жена олигарха

Лаванда Марго
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. (Не)любимая жена олигарха

Последний попаданец

Зубов Константин
1. Последний попаданец
Фантастика:
фэнтези
попаданцы
рпг
5.00
рейтинг книги
Последний попаданец

Деспот

Шагаева Наталья
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Деспот

Магия чистых душ

Шах Ольга
Любовные романы:
любовно-фантастические романы
5.40
рейтинг книги
Магия чистых душ

На границе империй. Том 3

INDIGO
3. Фортуна дама переменчивая
Фантастика:
космическая фантастика
5.63
рейтинг книги
На границе империй. Том 3

Защитник

Кораблев Родион
11. Другая сторона
Фантастика:
боевая фантастика
попаданцы
рпг
5.00
рейтинг книги
Защитник

Шатун. Лесной гамбит

Трофимов Ерофей
2. Шатун
Фантастика:
боевая фантастика
7.43
рейтинг книги
Шатун. Лесной гамбит

Бестужев. Служба Государевой Безопасности

Измайлов Сергей
1. Граф Бестужев
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Бестужев. Служба Государевой Безопасности