Основы кибернетики предприятия
Шрифт:
Подходящий кандидат должен поставить своей целью улучшение деятельности фирмы. Он не математик, заинтересованный в аналитических процессах ради них самих. Он не специалист по исследованию операций, который считает себя ученым и советником вместо того, чтобы быть руководителем с личной ответственностью за успех организации. Он должен иметь смелость для принятия решений в любых областях деятельности фирмы[147].
В описываемом здесь человеке будет большая нужда для замещения и других должностей фирмы. Динамическое моделирование является для фирмы преждевременным до тех пор, пока не станет ясно, что она в состоянии бороться за наиболее способных людей. Случайная посылка человека на учебу совершенно ничего не даст.
Человек,
Бывают, несомненно, исключения, но группа динамического моделирования редко удачно функционирует в составе отдела электронных машин или ординарной группы советников правления, работающих экспертами по исследованию операций. В первом случае отдел занят огромным объемом срочных конкретных работ; он склонен подойти к динамическому моделированию как к применению электронной машины, а не с точки зрения высшего руководства. Во втором случае часто ориентируются на науку, и в частности на математику, а не на вопросы управления.
Кажется, что наиболее успешное применение динамического моделирования будет иметь место тогда, когда оно предпринимается на долгосрочной базе и передается в руки обычного руководителя, который подходит к человеку с точки зрения его способности изучить новые методы управления, какие он сам сумеет применять в будущем как ответственный руководитель фирмы.
Наконец, встает вопрос об объеме фирмы, для которой динамическое моделирование более всего подходит. По первой общей предпосылке оно является орудием для использования главным образом в крупнейших предприятиях. Так как этот метод сильно развился, для такого вывода других оснований, как будто, не требуется. В больших организациях функциональные перегородки обычно бывают сильнее, чем в небольших фирмах, затрудняя этим прохождение человека через все виды деятельности — от исследования до сбыта. Начинает казаться, что ввиду быстрого роста организации среднего и малого объема могут стать тем местом, где рассмотренные в этой книге методы могут получить вначале наиболее удачное применение. Такие организации часто более гибки. Они могут быть более отзывчивыми на. предложения служащих фирмы, так что при желании последних исследовать новый метод управления такие организации идут им скорее навстречу. В более новых фирмах руководство часто моложе, надеется удержаться на службе дольше и принимает более долгосрочный план развития компании, чем это делается в более старых фирмах. Расходы на исследования систем управления невелики, и они не вызывают трудностей в организации с годовой продукцией в 1 млн. долл.
Ввиду организационного риска и неуверенности в подборе подходящего квалифицированного человека нет также уверенности в первоначальном успехе любой программы динамического моделирования. Однако такой же риск имеется во многих других случаях, где потенциальные выгоды не так велики. Здесь идет игра на ставки, сравнимые с обычной ожидаемой предельной прибылью в промышленности.
Приложение A
ИНТЕРВАЛ РЕШЕНИЯ УРАВНЕНИЙ
В разделе 6.5 рассмотрены правила выбора интервала DT при решении уравнений модели динамической системы. Следовало бы вновь прочесть этот раздел, прежде чем переходить к настоящему приложению.
Выбор интервала зависит от взаимоотношений уровней и темпов потоков в системе. Уровни взаимосвязаны с входящими и исходящими потоками через среднюю величину запаздывания, которое
Влияние изменения интервала решения можно проследить, рассмотрев уравнения запаздываний первого порядка (см. главу 8, уравнения 8–1 и 8–2).
LEV.K = LEV.J+(DT)(IN.JK-OUT.JK)
Предположим, что запаздывание вначале отсутствует; при этом темпы входящего и исходящего потоков равны нулю; скачок темпа входящего потока в одну единицу за единицу времени имеет место в момент времени, равный нулю. На рис. A-1 показаны итоговые кривые при различных отношениях величины интервала решения ко времени запаздывания, DT/DEL. По горизонтальной оси отложена отвлеченная величина отношения времени к величине запаздывания DEL.
Рис. A-1. Реакция запаздывания первого порядка на ступенчатый ввод при различных отношениях интервала решения DT к запаздыванию DEL.
Если интервал решения пренебрежимо мал, то практически в результате получается экспоненциальная кривая, показанная на графике для интервала, равного 0. Когда DT составляет половину от DEL, то в первой расчетной точке уровень, как и величина выходного темпа, достигает половины своего конечного значения. Остающаяся разница между выходными и входными темпами сокращается за каждый интервал времени наполовину.
Если интервал решения равен времени запаздывания, то уровень и темп исходящего потока достигают своих конечных величин к моменту окончания первого этапа вычислений. Экспоненциальное запаздывание приобретает некоторые черты, характерные для запаздывания в каналах снабжения. (Однако таким способом нельзя определять общее запаздывание в каналах снабжения.)
Для еще больших интервалов решений первый вычисленный уровень (как для кривой при DT=3/2 времени запаздывания) превысит его установившуюся величину. Темп выхода превысит темп входа. На следующем этапе вычислений величина уровня получится меньше своего установившегося значения. Если интервал решения находится между DEL и 2 (DEL), то в кривой выхода возникнут затухающие колебания.
При DT, равном 2 (DEL), при появлении скачка на входе на выходе возникнут незатухающие колебания. Если интервал решения DT больше, чем 2 (DEL), то колебания на выходе величины будут непрерывно возрастающими.
Кривая на рис. А-1 для интервала решения, равного половине постоянной запаздывания, вероятно, является приемлемым приближением, если только некоторые из запаздываний в системе приблизятся к выбранному значению интервала решения.