Основы кибернетики предприятия
Шрифт:
Интересующие нас модели могут приводиться в действие как замкнутые системы. При этом первостепенный интерес представляют внутренние динамические взаимодействия. Мы не всегда будем отдавать предпочтение изучению строго замкнутых моделей. Часто бывает целесообразно в порядке эксперимента ввести данные извне, чтобы возбудить внутренние реакции системы. Импульсы, скачки, гармонические колебания и помехи (случайные возмущения) обычно вводятся при такого рода экспериментах. Эти внешние (экзогенные) вводы имеют смысл только при условии, если мы готовы допустить, что внешние вводы совершенно независимы от результирующей реакции внутри системы.
Модели промышленных систем. Большинство математических моделей, которые встречаются в литературе по управлению и экономике, принадлежит к одной из двух групп, отмеченных кружками на рис. 3–1. Почти
Устойчивые промышленные системы могут иметь место в отраслях, производящих предметы широкого потребления. Неустойчивые системы, ограниченные только входящими в них нелинейными функциями, имеют, очевидно, место в производстве оборудования и предметов длительного пользования, и, пожалуй, также в отношении американской экономической системы в целом. Чтобы создать действительно эффективную модель промышленного предприятия, в нее следует включить нелинейные функции в виде ограничений производственной мощности, дефицита рабочей силы и ограниченности кредита, а также учесть зависимость решений от комплексного взаимодействия между переменными.
Поскольку время и связанные с ним изменения составляют главную заботу хозяйственного руководителя, эффективная модель должна быть динамической и способной создавать собственную эволюцию во времени.
Таким образом, речь идет о таких математических моделях, которые могут применяться для отражения последовательного во времени действия динамических систем линейных и нелинейных, устойчивых и неустойчивых, с постоянным или меняющимся режимом. Модель должна быть пригодна для воспроизведения того, что мы называем организационными формами, методами управления, а также тех явных и скрытых факторов, которые определяют характер развития системы во времени. Эти модели слишком сложны (десятки, сотни и тысячи переменных) для аналитического решения. Ведь современная математика может аналитическими методами решать лишь самые простые задачи из области нелинейных систем. Между тем модели, рассматриваемые в данной работе, применяются для имитации определенного порядка действий, являющегося результатом определенного комплекса исходных условий в сочетании с известной комбинацией помех и иных вводов в систему. Это экспериментальный, эмпирический подход в поиске правильного понимания проблемы и, следовательно, лучших результатов, однако без гарантии нахождения «оптимальных» решений того или иного вопроса.
В науке об управлении и в экономической литературе термином «математическая модель» обычно обозначаются любые математические взаимосвязи между вводом и выводом применительно к какой-либо части системы. В терминологии, принятой для технических целей, эту реакцию на выводе части системы в ответ на один или несколько вводов называют обычно «передаточной» функцией.
Данная функция определяет, каким образом условия на вводе передаются на вывод. В данном контексте простое математическое выражение, описывающее воздействие какого-либо звена системы на другие, непосредственно к нему примыкающие, мы не будем называть «моделью», а будем передавать его одним из синонимов: «передаточная функция», «функциональная связь», «уравнение решения» или «уравнение темпа». В противоположность этому «модель» будет означать систему, состоящую из комплекса взаимодействующих «уравнений решения».
3. 2. Модели в естественных науках, технике и общественных науках
Математические
Созданные модели солнечной системы, атома, ньютоновских законов движения, а также наследственности намного проще, чем модели, которые могут оказаться эффективными при анализе промышленных предприятий и экономических систем.
Для естественнонаучных систем чаще всего применяется анализ, основанный на допущении об их линейности. Большинство естественнонаучных систем, для которых удалось создать удачные модели, содержали в себе значительно меньше помех (неопределенности) по сравнению с нашими социальными системами. В естественных науках модели строятся на основе объяснения явлений, которые поддаются наблюдению, но обычно не подвержены изменениям. Методы установления статистических закономерностей, успешно применяемые в биологии при определении влияния косвенных причин на изменение наследственности, не обязательно окажутся эффективными при изучении социальных систем, где имеет место обратное воздействие следствия на причину.
Подход к источникам и задачам естественнонаучного и социологического моделирования был одинаков, и это нанесло ущерб развитию моделирования общественных систем.
Модели в технической и военной областях настолько отличаются от моделей естественнонаучных систем, что вполне можно говорить Об их принципиальном отличии. Они создаются разными путями и служат различным целям.
Модели, применяемые в технике и военном деле, гораздо ближе к моделям в области общественных наук, чем модели систем биологических и естественнонаучных. Управление и экономика, подобно технике, имеют дело с комплексными системами гораздо более высокого порядка, чем отдельные элементарные явления, которые зачастую являются объектом моделирования в естественных науках. В отличие от обычных естественнонаучных систем технические системы по своей сложности приближаются к общественным. Как технические, так и социальные системы имеют непрерывную градацию факторов (от несомненно важных к неопределенным и далее — к совершенно незначительным) по степени их влияния на каждое отдельное действие и решение. В отличие от этого естественнонаучные системы характеризуются резким разрывом между немногими важнейшими факторами, которые включаются в состав модели, и теми почти совершенно несущественными факторами, которыми пренебрегают. Для социальных систем особенно характерна замкнутость контура (обратные информационные связи), которая имеет место и во многих технических системах, но не свойственна большинству моделей в основных естественных науках. В моделях социальных систем, как и в технических (в отличие от простых естественнонаучных моделей), нас должны интересовать неустановившиеся, нециклические, неповторяющиеся явления.
Динамические модели оказались необходимыми при проектировании физических систем. Они применяются в авиационной технике, в проектировании управляющих систем для военных целей и при изучении сетей связи. Они включают людей и технику, поэтому они приобретают аспект социальных систем. Современную передовую технику невозможно было бы создать без знаний, полученных на основе математического моделирования.
О влиянии математических моделей на решения в области экономики и управления предприятиями этого сказать нельзя. Хотя моделирование в экономических исследованиях применяется уже давно, оно не пользуется общим признанием в качестве инструмента, помогающего хозяйственному руководству предприятия или целой страны.
Многие из неудач в построении экономических моделей могут быть объяснены ошибочными методами и попытками решить невыполнимые задачи. Нам необходим новый подход к построению и применению моделей социальных систем.
Цели. Вышеназванный контраст в отношении эффективности динамических моделей в технике и в экономике может быть частично объяснен характером использования средств построения моделей. Особенности применения моделей в этих областях вытекают, по-видимому, из различий в подходе к их конечным целям. В технике модели используются для проектирования новых систем, в экономике же они обычно применяются для объяснения систем уже существующих. Но оказывается, что в моделях, созданных исключительно для объяснения, ставились столь ограниченные задачи, что эти модели оказывались непригодными не только для проектирования, но даже для объяснения моделируемых явлений.