Основы регрессионного моделирования для психологов

на главную - закладки

Жанры

Поделиться:

Основы регрессионного моделирования для психологов

Шрифт:

Введение

Разработка данного учебного пособия является следствием ряда формальных и содержательных проблем, которые имеют место в ходе изучения студентами-психологами такого раздела учебной дисциплины «Математическая статистика и математические методы в психологии», как «Регрессионное моделирование в психологии».

Во-первых, разработка компьютерных статистических пакетов для обработки эмпирических результатов в гуманитарных дисциплинах (SPSS, Statistica и др.) не только привела к целому ряду позитивных моментов в научно-исследовательской деятельности в психологии (например, значительно сократилось время статистической обработки эмпирических данных, появилась возможность вносить определенные коррективы в планирование самого эмпирического исследования с опорой на промежуточные статистические результаты и т. д.), но и породила некоторые негативные моменты. В частности, можно привести два таких момента. Первый связан с тем, что простота «нажатия кнопок

по схеме» в компьютерных статистических пакетах, приводящего к конечному продукту статистического анализа (в Интернете в режиме свободного доступа достаточно много информационных источников, презентирующих эту схему), стала проявляться в том, что в научно-психологических исследованиях статистический анализ стали использовать «где надо» и «где не надо», забывая о том, что психология имеет весьма специфичный объект исследования. К примеру, многие в своих исследованиях пытаются найти некие статистические обобщения с применением компьютерных статистических пакетов (благо доступ к таким программам стал «беспроблемным») даже там, где с методологической точки зрения речь идет об уникальности бытия человеческой личности (понимающая методология). Особенно эта тенденция проявляется в исследовательских работах студентов-психологов, ориентированных на формальные требования к научно-исследовательским работам (требование использовать статистические методы). Второй связан с тем, что психолога-исследователя стали интересовать только «конечные распечатки» и он перестал обращать внимание на технологические аспекты математико-статистических расчетов, осуществляемых компьютером. Как следствие, абсолютно перестал учитываться тот факт, что в технологиях математико-статистического анализа для их проведения существует достаточно много формальных условий-требований, автоматически проявляющихся в «конечных распечатках», но выполнение которых не всегда возможно применительно к конкретной научной дисциплине, в частности к психологии.

Во-вторых, педагогический опыт показывает, что когда речь идет об изучении студентами-психологами продуктов моделирования в психологии по разным учебным дисциплинам, то приоритет отдается моделям, которые основаны на концептуальных взглядах автора модели, а не моделям, основанным на строгом статистико-математическом (мы специально используем связку в виде статистико-математический, а не математико-статистический, потому что в регрессионном моделировании математические расчеты осуществляются на основе статистических данных) анализе реальных эмпирических результатов (следствие – низкая объективность (научность) продуктов моделирования в нынешней психологии). Одна из причин такого положения вещей кроется в отсутствии у студентов понимания сути и технологических составляющих проведения регрессионного моделирования (основанного на строгом статистико-математическом анализе реальных эмпирических результатов) в психологических исследованиях.

Учитывая вышесказанное, в данном пособии мы попытались доступным для понимания языком представить содержание, которое синтезировало бы содержательные аспекты трех составляющих (компонентов):

1) методологических основ психологии как науки; 2) математических основ регрессионного анализа; 3) компьютерных технологий математико-статистического анализа эмпирических результатов.

Следуя этим путем, мы понимали, что создание такого «гибрида», как и любого гибрида, обязательно приведет и к негативным последствиям. В частности, он утратит часть содержательных аспектов каждого из своих «родительских» компонентов по сравнению с ситуацией, если бы мы рассматривали их в отдельности (чтобы снизить влияние этого фактора, в пособии в сносках приводится литература, которая позволит повысить знания в каждом из этих компонентов). Несмотря на это, как нам представляется, изучение содержания данного пособия студентами-психологами позволит решить две важные учебные задачи. Во-первых, будет способствовать развитию у них стратегического видения возможности применения регрессионного моделирования в реализации своих научно-исследовательских проектов (численное моделирование дает наиболее точную прогнозируемую оценку изучаемым явлениям). Во-вторых, будет способствовать развитию у них способности более качественно проводить регрессионное моделирование с технологической точки зрения.

Автором предисловия и параграфов 1.1, 1.3, 2.2, 2.3, 2.4, 3.1, 3.2, 3.3, 3.4, 4.1, 4.3 и тестовых заданий для самопроверки является В. А. Дорофеев, автором параграфов 1.2, 2.1, 4.2 – Ю. А. Мочалова.

Тема 1. Методологические аспекты регрессионного анализа в психологии

1.1. Законы и закономерности в психологии и регрессионный анализ

Чтобы иметь статус науки, психология должна опираться на определенные законы и закономерности. В задачи данного пособия не входит рассматривать методологические аспекты наличия или отсутствия законов и закономерностей в психологии и соотношения между ними 1 ,

только заметим, что в основе закона лежит связь между одним или несколькими явлениями (переменными) и другим или другими явлениями (переменными). Если следовать всем канонам требований к научности (объяснительности) результатов исследования, то разговор идет прежде всего о связи каузальной.

1

См. например: Корнилова Т. В., Смирнов С. Д. Методологические основы психологии: учеб. пособие. М.; СПб., Питер, 2006. С. 92–113.

Что касается определения сущности каузальной связи, то стоит заметить, что единого подхода к пониманию этой сущности не существует и, как следствие этого, нет единого подхода к ее эмпирическому изучению 2 .

С содержательной стороны построения регрессионных моделей, освещаемой данным пособием, важно заметить, что в определение каузальной связи может включаться или не включаться такой фактор, как время. Если фактор времени включить в определение, тогда каузальную связь можно определить следующим образом.

2

См. например: Митина О. В. Методы исследования каузальных связей. URL: http://psyjournals.ru/exp_collection/issue/33028_full.shtml.

Каузальная связь (от лат. causa – причина) – одна из важнейших форм взаимосвязи и взаимообусловленности явлений и процессов бытия, выражающая такую генетическую связь между ними, при которой одно явление (процесс), называемое причиной, при наличии определенных условий неизбежно порождает, вызывает к жизни другое явление (процесс), называемое следствием (или действием).

При каузальной связи причина и следствие разнесены во времени (одна психологическая переменная (причина) появляется раньше другой (следствие), а не наоборот). Следствие не может быть раньше причины – причина и следствие связаны генетически.

Например, в психологии в конце 1930-х гг. была сформулирована ставшая впоследствии широко известной в психологической науке теория фрустрации – агрессии. Ее авторами являются Н. Миллер, Д. Доллард, М. Дуб, Д. Маурер и Р. Сиэрс.

Представители этого направления Н. Миллер и Д. Доллард следующим образом сформулировали гипотезу: наличие агрессивного поведения всегда предполагает существование фрустрации и, наоборот, существование фрустрации всегда ведет к некоторой форме агрессии. Таким образом, в данной модели ее авторы отразили каузальную связь, включающую фактор времени: сначала фрустрация -> потом агрессия.

Однако экспериментальные данные в рамках вышеназванной теории показали, что только одной теории недостаточно для объяснения агрессивного поведения. Реальные экспериментальные исследования показали, что существуют явные и неявные переменные, которые не только искажают генетическую связь между фрустрацией и агрессией, но и нарушают универсальность каузальной (генетической) направленности такой связи.

Применительно к задачам и содержанию данного пособия заметим, что теория вероятностей и математическая статистика, которые в нем представлены, – лишь инструмент для изучения статистической зависимости между явлениями, но однозначно не позволяют установить наличие каузальной связи, включающей фактор времени. В психологии представления о генетически определяемой каузальной связи должны быть привнесены из некоторой другой теории, которая позволяет содержательно объяснить изучаемое явление.

Заметим, что психология как научная дисциплина в отношении включения фактора времени в регрессионные модели находится в весьма затруднительном положении по сравнению с другими дисциплинами (например, экономикой, биологией). В экономике и биологии в регрессионной модели фактор времени включается в моделирование в виде статистических данных, собранных на протяжении определенных предшествующих интервалов времени, чего практически не встретишь в психологии. Причин тому несколько. Например, одной из причин такого положения вещей (невозможность сформировать статистические базы данных на определенных периодах развития изучаемых явлений) является отсутствие в психологии надежного измерительного инструментария (за исключением психологии ощущения и восприятия (сантиметры, секунды)), позволяющего хотя бы отчасти сохранить объективность результатов измерений.

Иногда в литературе можно обнаружить исследования, в которых психологи-исследователи для нахождения каузальной связи используют дисперсионный анализ (ANOVA, MANOVA). Но дисперсионный анализ позволяет определить статистическую достоверность влияния одной (нескольких) переменной на зависимую (зависимые) переменную (проявляется в мере дисперсии зависимой переменной), однако наличие статистически достоверного влияния является необходимым, но еще далеко не достаточным условием генетически обусловленной связи между явлениями.

Книги из серии:

Без серии

Комментарии:
Популярные книги

Белые погоны

Лисина Александра
3. Гибрид
Фантастика:
фэнтези
попаданцы
технофэнтези
аниме
5.00
рейтинг книги
Белые погоны

Столичный доктор. Том III

Вязовский Алексей
3. Столичный доктор
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Столичный доктор. Том III

Король Руси

Ланцов Михаил Алексеевич
2. Иван Московский
Фантастика:
альтернативная история
6.25
рейтинг книги
Король Руси

Измена. Жизнь заново

Верди Алиса
1. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Жизнь заново

Идеальный мир для Лекаря 17

Сапфир Олег
17. Лекарь
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Идеальный мир для Лекаря 17

Эйгор. В потёмках

Кронос Александр
1. Эйгор
Фантастика:
боевая фантастика
7.00
рейтинг книги
Эйгор. В потёмках

Наследник

Кулаков Алексей Иванович
1. Рюрикова кровь
Фантастика:
научная фантастика
попаданцы
альтернативная история
8.69
рейтинг книги
Наследник

Дракон

Бубела Олег Николаевич
5. Совсем не герой
Фантастика:
фэнтези
попаданцы
9.31
рейтинг книги
Дракон

На изломе чувств

Юнина Наталья
Любовные романы:
современные любовные романы
6.83
рейтинг книги
На изломе чувств

Боярышня Дуняша

Меллер Юлия Викторовна
1. Боярышня
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Боярышня Дуняша

Кодекс Охотника. Книга XII

Винокуров Юрий
12. Кодекс Охотника
Фантастика:
боевая фантастика
городское фэнтези
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XII

Я еще не князь. Книга XIV

Дрейк Сириус
14. Дорогой барон!
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Я еще не князь. Книга XIV

Пограничная река. (Тетралогия)

Каменистый Артем
Пограничная река
Фантастика:
фэнтези
боевая фантастика
9.13
рейтинг книги
Пограничная река. (Тетралогия)

По осколкам твоего сердца

Джейн Анна
2. Хулиган и новенькая
Любовные романы:
современные любовные романы
5.56
рейтинг книги
По осколкам твоего сердца