Чтение онлайн

на главную

Жанры

Основы регрессионного моделирования для психологов
Шрифт:

Аппроксимация регрессией – приближенное аналитическое (формульное) выражение регрессии по ряду пар значений.

Обращаем внимание на две существенные детали.

Первая деталь не связана с методологическими аспектами науки психологии, а характерна для регрессионного анализа в любой научной дисциплине (технике, экономике, социологии и т. д.). Она заключается в том, что, усредняя значения зависимой переменной в результате проведения регрессии, мы потеряли какую-то часть информации, которая отражена в стохастической связи, но приобрели что-то очень важное – возможность численно моделировать зависимую переменную по значениям независимой переменной.

Вторая деталь, как следствие первой, связана

с методологией психологии. В психологии существует несколько направлений, которые опираются на идею абсолютной уникальности каждого человека, и, следовательно, усреднения, получаемые в результате регрессионного анализа, вообще бессмысленны. В частности, на уровне усредненных значений зависимой переменной по всей выборке мы можем наблюдать рост усредненных значений зависимой переменной при повышении значений независимой переменной, а на уровне отдельного испытуемого значения зависимой переменной могут не только не изменяться, но даже уменьшаться.

1.2. Регрессионные модели и математические модели

Термин «регрессия» был предложен Ф. Гальтоном в конце XIX в. Он обнаружил, что дети родителей с высоким или низким ростом обычно не наследуют выдающийся рост, и назвал этот феномен «регрессия к посредственности». Сначала этот термин использовался исключительно в биологическом смысле. После работ К. Пирсона его стали использовать и в статистике. Регрессионный анализ – метод моделирования измеряемых данных и исследования их свойств. Данные состоят из пар значений зависимой переменной (переменной отклика) и одной или нескольких независимых переменных (объясняющей переменной). Исследование зависимости случайных величин приводит к моделям регрессии и регрессионному анализу на базе выборочных данных.

Регрессионная модель f(w, x) – это семейство математических функций, задающее отображение f: W x X – > Y,

где: w W – пространство параметров;

x X – пространство независимых переменных;

Y пространство зависимых переменных.

С точки зрения возможности формализации закономерностей, в том числе и в психологии, необходимо различать математические модели и регрессионные модели.

Математическая модель предполагает участие аналитика в конструировании функции, которая описывает некоторую известную закономерность. Математическая модель является интерпретируемой – объясняемой в рамках исследуемой закономерности. При построении математической модели сначала создается параметрическое семейство функций, затем с помощью измеряемых данных выполняется идентификация модели – нахождение ее параметров. Известная функциональная зависимость объясняющей переменной и переменной отклика – основное отличие математического моделирования от регрессионного анализа. Недостаток математического моделирования состоит в том, что измеряемые данные используются для верификации, но не для построения модели, вследствие чего можно получить неадекватную модель. Также затруднительно получить модель сложного явления, в котором взаимосвязано большое число различных факторов 4 .

4

Стрижов В. В. Методы индуктивного порождения регрессионных моделей. М.: ВЦ РАН, 2008.

Регрессионное моделирование –

активно развивающийся класс методов. Они находятся на стыке анализа данных и моделирования явлений. Корень регрессионного моделирования – нахождение уравнения регрессии.

Уравнение регрессии – математическая функция, которая выражает связь между усредненными значениями одной зависимой переменной и одной или несколькими независимыми переменными.

Регрессионная модель объединяет широкий класс универсальных функций, которые описывают некоторую закономерность. При этом для построения модели в основном используются измеряемые данные, а не знание свойств исследуемой закономерности. Такая модель часто малоинтерпретируема, но более точна. Это объясняется либо большим числом моделей-претендентов, которые используются для построения оптимальной модели, либо большой сложностью модели.

Нахождение параметров регрессионной модели называется обучением модели.

Недостатки регрессионного анализа по сравнению с математическим моделированием:

– модели, имеющие слишком малую сложность, могут оказаться неточными;

– модели, имеющие избыточную сложность, могут оказаться переобученными.

Примерами регрессионных моделей являются: линейные функции, алгебраические полиномы, ряды Чебышёва, нейронные сети без обратной связи (например, однослойный персептрон Розенблатта), радиальные базисные функции и т. д.

Примерами математических моделей являются: математические модели на основе теории игр, модель «хищник – жертва», модель маятника и т. д.

1.3. Зависимая и независимая переменные и регрессионный анализ

Студенты-психологи при формулировке эмпирических гипотез научного исследования достаточно часто выдвигают предположение об одностороннем влиянии одной переменной на другую. В самой гипотезе это проявляется в выражениях типа: «переменная х является причиной переменной у», или «переменная х определяет переменную у», или «переменная х является основанием для переменной у».

Но в проверке такого рода гипотез допускают две методологические ошибки. Во-первых, забывают о том, что проверка такого рода гипотез возможна только через эксперимент.. В научных исследованиях изучить влияние одной переменной на другую, определить наличие каузальной связи и попытаться найти ее количественное выражение можно только с помощью одного метода – эксперимента. Изучение методологии, границ применимости и технологии проведения эксперимента в психологии составляет задачу другой дисциплины – экспериментальной психологии. Мы только заметим, что сегодня в психологии, в отличие от конца XIX – начала XX в. (тогда в психологии господствовал эксперимент), проводится достаточно мало экспериментальных исследований, и те, как правило, имеют статус квазиэксперимента. В реальности же в эмпирических исследованиях (особенно в студенческих научных исследованиях) имеют место одномоментные тестовые срезы двух или нескольких переменных с последующей статистической обработкой.

Во-вторых, степень влияния одной переменной на другую связывают с проведением корреляционного анализа и последующей интерпретацией коэффициента корреляции. Следует всегда помнить, что корреляция показывает взаимосвязь, но не влияние.

Можно ли в такой ситуации однозначно определить каузальную (генетическую) связь на основе статистической обработки данных? Ответ – категорическое нет. Но меры влияния одной переменной на другую статистическими методами определить можно. И, сравнив между собой эти меры, можно с определенными оговорками определиться, какую переменную лучше использовать в качестве объясняющей (независимой), а какую – в качестве объясняемой (зависимой).

Поделиться:
Популярные книги

Проклятый Лекарь. Род III

Скабер Артемий
3. Каратель
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Проклятый Лекарь. Род III

Мастер Разума III

Кронос Александр
3. Мастер Разума
Фантастика:
героическая фантастика
попаданцы
аниме
5.25
рейтинг книги
Мастер Разума III

Измена. Возвращение любви!

Леманн Анастасия
3. Измены
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Возвращение любви!

Неудержимый. Книга XI

Боярский Андрей
11. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XI

Сердце Дракона. Том 9

Клеванский Кирилл Сергеевич
9. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.69
рейтинг книги
Сердце Дракона. Том 9

Война

Валериев Игорь
7. Ермак
Фантастика:
боевая фантастика
альтернативная история
5.25
рейтинг книги
Война

Под маской моего мужа

Рам Янка
Любовные романы:
современные любовные романы
5.67
рейтинг книги
Под маской моего мужа

Камень. Книга 3

Минин Станислав
3. Камень
Фантастика:
фэнтези
боевая фантастика
8.58
рейтинг книги
Камень. Книга 3

Измена. Право на счастье

Вирго Софи
1. Чем закончится измена
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Измена. Право на счастье

Газлайтер. Том 12

Володин Григорий Григорьевич
12. История Телепата
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Газлайтер. Том 12

Сиротка

Первухин Андрей Евгеньевич
1. Сиротка
Фантастика:
фэнтези
попаданцы
5.00
рейтинг книги
Сиротка

Охота на эмиссара

Катрин Селина
1. Федерация Объединённых Миров
Любовные романы:
любовно-фантастические романы
5.00
рейтинг книги
Охота на эмиссара

Кодекс Охотника. Книга XV

Винокуров Юрий
15. Кодекс Охотника
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Кодекс Охотника. Книга XV

Сердце Дракона. Том 12

Клеванский Кирилл Сергеевич
12. Сердце дракона
Фантастика:
фэнтези
героическая фантастика
боевая фантастика
7.29
рейтинг книги
Сердце Дракона. Том 12