Основы статистической обработки педагогической информации
Шрифт:
Найдем время отправления первого и последнего рейса каждый день:
неотмененные %>% group_by (year, month, day) %>%
summarise( первый_рейс = min (dep_time),
последний_рейс = max (dep_time) )
Измерение позиции указателя на элементах списка осуществляется функциями first(x) для выбора первого элемента переменной x, nth(x, n) для выбора n– ного, last(x) для выбора последнего.
Следующая функция range дополняет фильтрацию. Приведём пример, в котором сначала все записи группируются по датам и ранжируются, а потом фильтрация оставляет в строках значения, имеющие наибольший и наименьший из рангов в группе. Для сравнения, вызов функции range(неотмененные$dep_time) вернёт список, состоящий из наибольшего и наименьшего значений переменной dep_time:
неотмененные %>% group_by (year, month, day) %>%
mutate(ранжирование = min_rank(desc(dep_time))) %>%
filter(ранжирование %in% range(ранжирование) )
Ранее в вычислениях уже использовалась функция n, которая вызывается без аргументов, и возвращает размер текущей группы. Чтобы посчитать количество непустых значений в группе х, используется конструкция sum(!is.na(x)), а чтобы подсчитать число различных (уникальных) значений вызывается n_distinct(x). Например, вычислим, какие направления имеют наибольшее количество перевозчиков:
неотмененные %>% group_by(dest) %>%
summarise(перевозчики= n_distinct(carrier)) %>%
arrange(desc(перевозчики))
Подсчеты значений настолько востребованы, что в пакете dplyr выделена отдельная функция count для этого. Подсчитаем число повторений каждого направления, хранящихся в переменной dest таблицы неотмененных авиарейсов:
неотмененные %>% count(dest)
При необходимости указывается параметр веса каждого слагаемого (wt). Например, это можно использовать для подсчета общей суммы количества миль, которые пролетел самолет с фиксированным бортовым номером, взятым из поля talinum в базе неотмененных рейсов:
неотмененные %>% count(tailnum, wt = distance)
Подсчет числа значений удовлетворяющих логическому выражению, sum(x > 777), или их среднее количество, mean(y == 0), предполагает, что в связке с числовыми функциями TRUE преобразуется в 1, а FALSE в 0. Это делает функции sum и mean очень востребованными: sum(x) возвращает количество значений TRUE для аргумента x, а mean(x)
неотмененные %>% group_by(year, month, day) %>%
summarise(утренние_рейсы = sum(dep_time < 600))
Какова доля неотмененных рейсов, задержавшихся более часа:
неотмененные %>% group_by(year, month, day) %>%
summarise(часовая_задержка = mean(arr_delay >= 61))
При группировании по нескольким переменным, каждая новая сводка выносится на новый уровень группировки. Это облегчает восприятие и постепенно упрощает данные:
группы_по_дням <– group_by(flights, year, month, day)
(сводка_по_дням <– summarise(группы_по_дням, полётов = n))
(сводка_по_месяцам <– summarise(сводка_по_дням, полётов = sum(полётов)))
(сводка_за_год <– summarise(сводка_по_месяцам, полётов = sum(полётов)))
Будьте осторожны при постепенном сворачивании выборки, это приемлемо для итоговых сумм и счетчиков, но нужно не забывать про такие характеристики, как медиана и отклонение, анализ результатов свёртки принципиально невозможен в ранговой статистике. Другими словами, сумма внутригрупповых сумм является общей суммой, но медиана внутригрупповых медиан не будет равна общей медиане, о последнем свойстве порой сознательно забывают при выведении нужных результатов из различных голосований. Если потребуется отменить группировку, и вернуться к операции с негруппированными данными, то используется функция ungroup:
группы_по_дням %>%
ungroup %>% # разгруппируем данные обратно
summarise(полётов = n) # подсчитаем все полёты
Упражнения
1. Примените мозговой штурм чтобы изобрести как минимум 7 различных способов анализа типовых причин серийной задержки рейсов, учитывая следующие сценарии:
а) в 50% случаев вылет осуществляется на 15 минут раньше запланированного, и в 50% рейс задерживается на 15 минут.
б) рейс всегда опаздывает на 10 минут.
в) 50% рейсов вылетает на 30 минут раньше, и 50% на 30 минут опаздывает.
г) в 99% случаев рейс выполняется точно по графику, а в оставшемся 1% происходит опоздание на 2 часа.
Что более важно для пассажира, задержка прибытия или задержка вылета, а для работы аэропортов?
2. Придумайте альтернативный способ решения той же задачи, что и в примерах неотмененные %>% count (dest), неотмененные %>% count(tailnum, wt = distance), но без использования функции count.
3. Следующее определение отмененных рейсов не оптимально:
отмененные <– flights %>%
filter( is.na(dep_delay) | is.na(arr_delay) )
Почему? Какая колонка важнее в этом случае: задержка времени вылета (dep_delay) или задержка времени прилёта (arr_delay)?
4. Посмотрите на ежедневное количество отмененных рейсов. Есть ли здесь закономерность? Связана ли доля отмененных рейсов со средней задержкой?
5. Какой перевозчик (carrier) имеет худшую статистику по задержкам рейсов? Можно ли обнаружить зависимость плохих статистических показателей аэропортов от качества работы перевозчиков? Если да, то как, если нет, то почему?