Основы статистической обработки педагогической информации
Шрифт:
6. За что отвечает аргумент выбора способа сортировки sort в функции count? Когда уместно его использование?
Группирование данных бывает полезным в сочетании с функцией подведения итогов summarise, но есть удобные шаблоны и для операций преобразования mutate с фильтрацией filter. Вспомним про укороченный_вариант_таблицы <– select(flights, year:day, ends_with("delay"), distance, air_time), хранящий лишь сведения об опозданиях, и выделим по 5 злостных нарушителей регламента полётов на каждый день:
укороченный_вариант_таблицы %>% group_by(year, month, day) %>%
filter(rank(desc(arr_delay)) <= 5)
Сгруппируем
( популярные_направления <– flights %>% group_by(dest) %>%
filter(n > 17282) )
Преобразуем их для дальнейшего вычисления метрических характеристик внутри каждой из полученных групп:
популярные_направления %>% filter(arr_delay > 0) %>%
mutate(относительная_задержка = arr_delay / sum(arr_delay)) %>%
select(year:day, dest, arr_delay, относительная_задержка)
Как видим, группирующая фильтрация приводит к изменениям, за которыми следует обычная фильтрация. Желательно избегать подобного, за исключением поверхностного анализа данных, в противном случае бывает трудно проверить корректность выполненных манипуляций. Функции, которые наиболее естественно работают со сгруппированными данными, например mutate и filter, называются оконными функциями, в отличие от резюмирующих функций типа summary. Узнать больше об оконных функциях можно вызвав соответствующий раздел справки, введя консольную команду vignette("window-functions").
Упражнения
1. Вернитесь к примерам использования функций mutate и filter со списками. Как меняется результат каждой операции при создании промежуточных групп данных?
2. Какой самолет (бортовой номер) имеет рекордно худшее время вылета?
3. В какое время суток нужно лететь, чтобы максимальное избежать задержек?
4. Для каждого пункта назначения вычислите суммарное время задержек. Для каждого рейса вычислите долю его задержек в общей сумме.
5. Задержки обычно коррелируют по времени: после того как вызвавшая первоначальную задержку проблема была решена, более поздние рейсы задерживаются, чтобы разрешить ранним покинуть аэропорт. При помощи функции lag исследуйте, как задержка каждого рейса связана с задержкой непосредственно предшествующего.
6. Просмотрите каждый пункт назначения. Можно ли найти рейсы, долетевшие подозрительно быстро? То есть те полеты, которые потенциально представляют собой ошибку ввода данных. Вычислите долю воздушного времени полета относительно самого скоростного рейса до выбранного пункта назначения. Какие рейсы были дольше всего задержаны в воздухе?
7. Найдите все пункты назначения, в которые одновременно следовало как минимум два перевозчика. Используйте эту информацию для ранжирования перевозчиков.
8. У каждого самолета найдите количество рейсов до первой задержки более 1 часа.
§3. Организация рабочего процесса
Теперь у читателя есть некоторый опыт выполнения кода R, без погружения в детали, но достаточный, чтобы разобраться в основах, иначе эта книга уже была бы закрыта. Разочарование естественно, когда начинаете
2*2
#> [1] 4
sin(pi/2)
#> [1] 1
Но только в поле действительных чисел, что естественно для языка программирования статистической обработки данных и построения графиков:
(-1)^(1/2)
#> [1] NaN
(-1+0i)^(1/2)
#> [1] 0+1i
Можно создавать новые объекты с помощью оператора <-:
x <– 2*2
Все команды R, которыми создаются объекты путём присваивания, имеют одинаковую форму:
имя_объекта <– получаемое_значение
При чтении этого кода в вашей голове может прозвучать: объект «имя_объекта» получает значение «получаемое_значение». В дальнейшем понадобится решать много интересных задач, набирая большие тексты при этом. Не ленитесь, используя знак =, он тоже будет работать, но позднее приведет к путанице. Вместо этого используйте клавиатурное сокращение RStudio: Alt + – (знак минус) для быстрого набора <-. Обратите внимание, что RStudio автоматически окружает <– пробелами. Приятно читать хорошо оформленный код, поэтому недайсвоимглазамсломаться, используйте пробелы.
Имена объектов должны начинаться с буквы и могут содержат только буквы, цифры, нижнее подчеркивание «_» и точку «.», вы ведь хотите, чтобы имена объектов были информативны, поэтому понадобится соглашение для склеивания нескольких слов. Мне привычнее змеиный_стиль, в котором строчные слова разделяются нижним подчеркиванием «_».
НекоторыеЛюдиИспользуютВерблюжийСтиль,
третьи.Вовсе_ОТКАЗЫАВЮТСЯОтусловностей.
Вернемся к стилю позже, в разделе посвященном описанию функций. А пока, можно проверить содержимое ранее созданного объекта, введя его имя:
x
#> [1] 4
Выполните эксперимент, введите:
это_действительно_длинное_имя <– 777
Чтобы проверить значение этого объекта, попробуйте в RStudio средство завершения строки: введите «это» и нажмите клавишу Tab, либо Ctrl + Space (пробел), добавятся недостающие символы, так как пока этот префикс уникален, а затем нажмите клавишу Enter. А что, если это_действительно_длинное_имя должно было иметь значение 1234, а не 777. Можно использовать другое сочетание клавиш, чтобы исправить его. Введите «это» и нажмите Ctrl + ^. Появится список всех ранее набранных команд, которые начинаются с таких букв. Воспользовавшись стрелками навигации и нажав Enter, выбранная команда наберется повторно. Тогда можно будет изменить значение параметра с 777 на 1234 и выполнить ввод.