Острее шпаги (Клокочущая пустота, Гиганты - 1)
Шрифт:
– Он превратится в параболу!
– обрадованно воскликнул Блез Паскаль.
– Браво, юноша!
– восхитился Ферма.
– Эрго - эллипс с бесконечно длинной большой осью не что иное, как парабола. Теперь продолжим дальше поворот нашей секущей плоскости, чтобы она уже не стала параллельной образующей и снова пересекла, но теперь уже не только верхний, но и нижний конус. Что произойдет на чертеже? Конец большой оси вместе с малым овалом эллипса вернется к нам, но уже с другой стороны, как бы обогнув немыслимо огромный шар вселенной, радиус которого равен бесконечности.
– Это же будет
– снова нашелся Блез Паскаль.
– Верно, юноша, гипербола, которая станет равнобокой, если секущая плоскость будет параллельна оси конусов.
– И вы считаете, метр, бесконечность реальной?
– на великолепной латыни спросил Омар Торричелли.
– Безусловно, - не задумываясь, ответил Ферма.
– Вот вам еще одно доказательство существования господа бога! вставил Декарт.
– Не к этому ли я призывал и попов и ученых?
– Тссс!
– замахал руками аббат Мерсенн.
– Умоляю тебя, Рене Декарт, не ставить под сомнение слепую веру в господа бога, по крайней мере, в стенах монастыря, где она - основа нашего прибежища.
– Не буду, не буду!
– буркнул Декарт.
– Ведь не я доказываю реальность неисповедимой, как учит церковь, бесконечности, а Ферма!
– А во мне холодеет кровь при мысли о ней, - признался Блез Паскаль.
– Как беспомощен человек, обретаясь между ничтожеством и бесконечностью!
– Полно, юный друг, - ласково обратился к нему Ферма.
– Вам ли это говорить, который, несмотря на свою юность, подарил людям "суммирующую машину", способную выполнять некоторые обязанности нашего мозга. Предвижу, что когда-нибудь далекие потомки вашей машины станут состязаться с самим человеком в остроте мышления, не говоря уже о быстроте счета.
– Умоляю вас, почтенные искатели истин, - воздев руки к небу, прервал Ферма аббат Мерсенн, - не затрагивайте богословских тем, ибо приписывание мертвому механизму способностей человеческой души может быть превратно истолковано святыми отцами церкви.
– Мой учитель Галилео Галилей понял бы господина Ферма, но за тех, кто принудил Галилея отречься от своих верных мыслей, я не рискну поручиться, - заметил Торричелли.
– Во всяком случае, имея в виду, - вступил Декарт, - что человеческое тело подобно мертвому механизму и только душа делает его живым и способным к мышлению, надо сразу сказать, что и машина господина Блеза Паскаля, как бы ее ни усовершенствовали потомки, никогда не сможет мыслить самостоятельно, а будет лишь выполнять предписанное человеком, обладающим душой.
– Но у нашего юного Паскаля есть и еще изобретения, которые отнюдь не говорят о его прозябании между ничтожеством и бесконечностью, - продолжал Ферма.
– Достаточно вспомнить тачку, совмещающую в себе архимедов рычаг с колесом. Трудно ошибиться, представив себе несметное число подобных приспособлений, облегчающих труд людей на строительстве домов и дорог, храмов и крепостей не только во Франции, но и во всем мире! А предложение того же Блеза Паскаля учредить многоместный экипаж, следующий всегда по определенному маршруту и останавливающийся в условленных местах для высадки и приема пассажиров, не имеющий ни лошадей, ни карет!* Нет, дорогой Блез, даже в наш век "шпаги и знатности", как видим, есть
_______________
* Омнибус, предложенный Б. Паскалем. (Примеч. авт.)
– Такая оценка нашего молодого друга, - заметил Торричелли, - делает вам честь, господин Ферма, но ведь и вы, как начали нам рассказывать, хотели с помощью математики защитить интересы простых пейзан.
– Ах да!
– подхватил Декарт.
– Доскажите, что вы там намудрили, чтобы я мог вас опровергнуть.
Ферма вспыхнул:
– Я остановился на том, что разбил криволинейные участки на более мелкие, ограниченные кривыми второго порядка, а для них предложил метод отыскания точки их перегиба, то есть максимума и минимума. Определение же площади, ограниченной такой кривой, есть действие, обратное отысканию точки перегиба и проведению в ней касательной*.
_______________
* Примечание автора для особо интересующихся. Метод Ферма, в
свое время несправедливо оспоренный Декартом, предвосхищал
дифференциальное и интегральное исчисление, хотя задачу решал
алгебраически, без анализа бесконечно малых величин. В задаче
разбивки прямой с длиной "a" на две части, так, чтобы квадрат одной
(x\2), помноженный на величину другой части = (a - x), был бы
максимальным, он приравнивал 2ax - 3x\2 к нулю и получал, что x = 2 /
3a, то есть заменял современное дифференцирование и взятие первой
производной.
Ферма написал на аспидной доске мелом несколько формул.
Поднялся Декарт во весь свой внушительный рост и взметнул гривой волос:
– Мысли метра Ферма совершенно непонятны. Мне ясно лишь то, что он натолкнулся на метод случайно, не зная его основания. В результате, как ни прискорбно мне это сказать, но метр Ферма приходит к паралогизму, то есть к противоречиво, полностью уничтожающему его метод как некорректный.
Как известно, Ферма обычно не приводил обоснования предлагаемых им формул и методов. Однако старания современников получить по его методам ошибочный результат были тщетными, как и попытки доказать эти методы. За Ферма установилась слава математического волшебника, который знает нечто, людям не доступное, делясь с ними только выводами.
Однако сейчас, после резкого выпада Декарта, Ферма изменил своему обыкновению и стал методично, спокойно и дружелюбно разъяснять Декарту, как любимому ученику, суть его непонимания. Он старался ничем не унизить его, добиваясь лишь, чтобы тот понял его.
А понять Ферма его современникам было нелегко, ибо он, по существу, предвосхитил работы Исаака Ньютона и Г. Лейбница, независимо друг от друга открывших дифференциальное и интегральное исчисление, резко споря между собой, кто сделал это первым, забыв о методе Ферма, высказанном еще до их рождения. Метод, который позволял поистине волшебным путем (алгебраическим!) получать первую производную! (Скажем, скорость движения, имея кривую пройденного в отмечаемое время пути, то есть давая результат современного дифференцирования, а получение им площадей, ограниченных кривыми, представляло собой современное интегрирование, то есть суммирование бесконечно малых величин!)