Открытие Вселенной - прошлое, настоящее, будущее
Шрифт:
Элементарные частицы характеризуются рядом параметров — таких, как масса, собственный момент количества движения (спин), заряды, с помощью которых обычно описывается взаимодействие и (или) законы сохранения [205] . Если частица нестабильна, то есть самопроизвольно распадается в вакууме, то по известным схемам распада вычисляют ее время жизни, и оно должно полностью выражаться через фундаментальный набор констант.
Собственный момент количества движения (спин) всегда дается в единицах постоянной Планка ћ. Частицы, чей спин выражается в целых значениях ћ (0, ћ, 2ћ и т. д.), называют бозонами (в честь индийского физика Шатьендраната Бозе), а в полуцелых (ћ/2, 3ћ/2 и т. д.) — фермионами (в честь итальянского физика Энрико Ферми).
205
Массы частиц можно выражать в граммах или килограммах, однако это не очень удобно. Поэтому используют специальные
Электрический заряд всегда задают в единицах заряда электрона, а для описания электромагнитных взаимодействий удобна безразмерная величина = e2/ ћc » 1/137, так называемая постоянная тонкой структуры Аналогичные константы для описания сильных взаимодействий в 100 — 1000 раз больше. Для слабого взаимодействия вводится универсальная постоянная Ферми GF » 10– 5. ћ3/mp2c.
Аналогом постоянной тонкой структуры в гравитационных взаимодействиях служит квадрат отношения массы элементарной частицы к планковской массе (гр = Gm2/ ћc = 1/2 (m/mP)2). Некоторым частицам приписывают заряды, не имеющие динамического смысла, необходимые лишь для того, чтобы характеризовать сохранение частиц определенного сорта в реакциях. Так вводят, например, барионный заряд, полагая, что в любой реакции разность между числом барионов и антибарионов постоянна.
Калибровочные бозоны [206] — частицы со спином единица, переносчики электрослабого взаимодействия. В это семейство входят фотон (от греч. pћotos — частица света) — безмассовый квант электромагнитного поля (экспериментальное ограничение m меньше 3.10–33 МэВ) и открытые совсем недавно промежуточные бозоны — два заряженных W+ и W– (mw = 80,6 +- 0,4 ГэВ) и один нейтральный Z0 (mZ = 91,161 +- 0,031 ГэВ). Фотон стабилен. W- и Z-бозоны, самые тяжелые из известных частиц, распадаются на лептон-антилептонные пары, однако их времена жизни оцениваются пока весьма приближенно ~ (2? 3) 10–25 с).
206
Здесь и в дальнейшем данные заимствуются из «Обзора свойств частиц», составленного международной группой по данным о частицах (Particle Data Group, «Review of Particle Properties», Pћysics Letters, В 239, April, 1990).
Лептоны (от греч. leptos — легкий, мелкий) — к этому семейству частиц относятся электрон (е– ), мюон (– ), -лептон (– ) и три типа нейтрино — электронное (e), мюонное () и -нейтрино (), а также соответствующие античастицы — позитрон (е+), антимюон (+), анти- (+) и три типа антинейтрино (e, ,). Все они — фермионы со спином 1/2. Характерное свойство лептонов — отсутствие собственной структуры, в рамках современных экспериментальных данных их рассматривают как точечные частицы, которые не способны напрямую участвовать в сильных взаимодействиях. Массы и времена жизни лептонов указаны в таблице (у соответствующих антилептонов те же параметры):
Частица | e | е | ||||
---|---|---|---|---|---|---|
Масса (МэВ) | 0(меньше 17эВ) | 0,51099906(15) | меньше 0,27 | 105,65839 (6) | меньше 35 | 1784,1(3) |
Время жизни (сек) | стабильно ( > 300me) | стабилен ( > 2.1022 лет) | стабильно ( > 1,1.105. m,) | 2,19703(4).10– 6 | (3,03 ±0,08).10– 13 |
В экспериментах московской группы из Института теоретической и экспериментальной физики по уточнению спектра -распада (n " p + e– +e) было получено нижнее ограничение на массу электронного нейтрино (14 эВ меньше m?e меньше 46 эВ), что эквивалентно доказательству наличия у нейтрино ненулевой собственной массы. Пока этот результат не подтвержден достаточным объемом независимых данных. Природа процессов, приводящих к огромному расщеплению масс е — — пока не выявлена, и поэтому неясно, могут ли существовать недоступные современному эксперименту новые члены лептонного семейства.
Кварки (от англ. quark — образ таинственного духа, заимствованный из романа Джеймса Джойса «Поминки по Финнегану») — особые фермионы, существующие внутри адронов, но пока никогда не наблюдавшиеся в свободном виде. Несмотря на это, кварки считаются экспериментально обнаруженными объектами, например, очень быстрые электроны сталкиваются с ними, пролетая сквозь адрон. Для описания современных данных, связанных с адронами, вводят пять типов кварков — так называемых ароматов: u (верхний, от англ. up), d (нижний, от англ. down), с (очарованный, от англ. cћarm), s (странный, от англ. strange), b (прелестный от англ. beauty, или низший от англ. bottom), кроме того, есть серьезные теоретические основания дополнить их шестым t кварком (высшим от англ. top). Это устанавливает очень полезную симметрию между кварками и лептонами, которую можно задать классификацией обоих семейств по поколениям. В первое поколение входят e и е и, соответственно, u- и d-кварки, во второе — и вместе с с- и s-кварками, в третье — и вместе с t- и b-кварками. Электрические заряды кварков выражаются в долях заряда электрона (+ 2/3 у u, с, t и -1/3 у d, s, b; для антикварков заряды имеют противоположные знаки). Но кроме аромата кваркам необходимо приписать особое зарядовое свойство, обычно именуемое цветом [207] . Каждый кварк существует в одном из 3-х цветовых состояний (например, желтом, синем или красном). Таким образом, кварков 18 (столько же антикварков), и в каждом лептон-кварковом поколении содержится по 8 частиц.
207
Такие наименования, как аромат, цвет или очарование — чисто художественные образы, не имеющие отношения к попыткам (в духе древней натурфилософии) понюхать кварки или оценить их «истинное лицо». Поток художественных образов, обрушившийся в последнее время на многие области фундаментальных исследований, можно расценивать как естественную реакцию на формалистическое засушивание языка научных статей и книг.
Данная схема позволяет полностью классифицировать все известные адроны по определенному кварковому составу. Например, считают, что протон состоит из двух u- и одного d-кварка, причем его полный электрический заряд единица (+2/3 + 2/3 -1/3 = +1). Нейтрон представляется комбинацией udd (+2/3 1/3 — 1/3 = 0),? — гиперон — uds, мезоны — комбинацией кварка и антикварка (+ = ud, K+ = us, D+ = cd, F+ = cs, = сс, = bb и т. п.). Очень важно, что цвета кварков подбираются таким образом, что все наблюдаемые адроны оказываются цветонейтральными или белыми (пользуясь аналогией в смысле смешения трех чистых цветов). В этом плане цветовой заряд похож на электрический, скажем, нейтральный атом водорода можно считать смесью чистого отрицательного (электрон) и положительного (протон) электрических зарядов.
Массы кварков, нерегистрируемых в свободном состоянии, определяются лишь косвенно по анализу их связанных состояний — адронов. Поэтому речь может идти лишь о несколько неопределенной эффективной массовой характеристике. Современные данные позволяют привести, например, такой набор оценок: mu ~ 5 МэВ, md ~ 7 МэВ, ms ~ 150 МэВ, mс ~ 1,4 ГэВ, mb ~ 4,8 ГэВ, mt > 20 ГэВ.
Глюоны (от англ. glue — клей) — безмассовые частицы, играющие роль кваркового клея. Именно глюоны переносят взаимодействие между кварками и удерживают последние в «безвыходной темнице» внутри адронов. Современные теоретические схемы используют 8 глюонов, которые в роли переносчиков взаимодействия похожи на фотон и промежуточные бозоны (тоже имеют спин единица и являются калибровочными бозонами). Но фотон обеспечивает электромагнитную связь, будучи сам электрически нейтральной частицей, тогда как некоторые глюоны сами несут цветовой заряд, и каждый глюон может быть источником других глюонов. 6 глюонов обеспечивают изменение кварковых цветов в процессах взаимодействия, а 2 — ответственны за взаимодействия кварков, сохраняющих цвет. По современным представлениям, глюонные силы оригинальны в том отношении, что они исчезают на очень малых расстояниях, но могут стать велики на больших.
Адроны (от греч. ћadros — тяжелый, сильный) — самое обширное семейство частиц, в которое включают и бозоны (мезоны) и фермионы (барионы), сильно взаимодействующие друг с другом. Массы и времена жизни некоторых адронов приводятся в таблице:
#
Частица Название Масса (МэВ) Время жизни (сек) или? — ширина для резонансов (МэВ)
#
Мезоны
Стабильные
0 -ноль-мезон 134,9739 (6) 8,4.10– 17
± ±-мезон 139,5675 (4) 2,6030 (24).10– 8