Открытие Вселенной - прошлое, настоящее, будущее
Шрифт:
Вскоре после начала опытов Вебер отметил, что в обоих цилиндрах в среднем раз в две недели одновременно возникают колебания, и никаких причин, кроме возможной регистрации искомых волн, для этих колебаний не видно. Более того, Вебер рассчитал местонахождение источника излучения где-то в центре Галактики.
Публикация результатов прозвучала сенсационно и в то же время вполне реалистически: в неизбежность этого открытия верили более полувека. Трудно назвать хоть одно физическое явление, к открытию которого физики были бы морально готовы в такой степени.
Но очень быстро наступил более пессимистический момент. Теоретики сообразили, что поток
Так родилась любопытнейшая проблема — что именно зарегистрировано в опытах Вебера? По этому поводу формулировались самые разные гипотезы, но окончательной ясности так и нет.
Ясно только, что официальное открытие гравитационных волн еще не состоялось. Вебер сделал шаг в нужном направлении, но его данные пока нельзя интерпретировать так, как хотелось бы. Тем более, что прокатившаяся по всему миру «гравитационно-волновая лихорадка», сопровождавшаяся еще более прецизионными измерениями, дала обескураживающие результаты. Ни одна лаборатория не смогла воспроизвести нечто даже близко напоминающее веберовские достижения.
Остается надеяться, что проблема обнаружения гравитационных волн все-таки не перейдет по наследству в 21 столетие. Для ее решения прилагаются очень серьезные усилия. И даже небольшая вероятность положительного результата вполне их окупает.
Дело в том, что гравитационные волны с большой степенью вероятности могут послужить ключом к решению фундаментальнейших задач — от физики элементарных частиц до космологии.
Реликтовые гравитационные волны должны нести информацию о самых ранних эпохах космологической эволюции. Из-за слабости взаимодействия гравитационные волны очень рано отрываются от остальных видов материи, и с их помощью мы смогли бы заглянуть едва ли не в Сингулярность, во всяком случае, по современным представлениям, ни один иной реликт не способен напрямую рассказать о состоянии Вселенной в планковскую эру t ~ tP. Таким образом, они дают абсолютный хронологический зонд, несут на себе отпечаток самой ранней истории, включая Первовзрыв.
Распространяясь в космическом пространстве, гравитационные волны опять-таки из-за предельно слабого взаимодействия с веществом способны настолько глубоко проникать вовнутрь плотных небесных тел, насколько это вообще возможно. Гравитационная астрономия выявила бы такие детали строения Вселенной, которые, видимо, никакими иными путями не добыть. Особо важно в этом отношении зондирование самых активных областей — ядер галактик и квазаров, которые практически недоступны наблюдению иными средствами. Между тем, там спрятаны наиболее мощные энергетические источники. Гравитационная карта неба должна весьма радикально отличаться от электромагнитной, полученной в диапазоне оптических и радиоволновых наблюдений. И возможно, мы пока совсем поверхностно оцениваем общую светимость ряда объектов — как раз в гравитационной области они и могут оказаться особенно яркими. Трудно избежать и предположения о том, что только наблюдения гравитационного излучения откроют путь к области экстремально высоких светимостей, близких к планковскому пределу LP.
Наконец, очень важно, что, исследуя гравитационные волны, мы вплотную подошли бы к решению задачи квантования гравитации. Опыт работы в области электродинамики подсказывает, что именно через волновую теорию проще всего прорваться к обнаружению корпускулярной структуры поля. В электродинамике этот процесс привел к теории фотонов. При квантовании гравитационного поля, казалось бы, должны проявляться особые частицы — гравитоны.
Теоретики изобрели их сразу же, как только были получены соответствующие решения волновых уравнений слабого гравитационного поля. Работа эта шла по аналогии с квантовой электродинамикой, но, к сожалению, без соответствующей экспериментальной основы.
Были построены простейшие модели взаимодействия гравитонов с другими частицами. Выяснилось, например, что электрон и позитрон, в принципе, могут аннигилировать в пару гравитонов, а гравитон в поле звезды может рождать пару — частицу и античастицу. Отсюда, естественно, возникло подозрение, что процессы такого рода и составляют микроскопическую основу взаимосвязи материи с геометрией пространства-времени, взаимосвязи, которая лишь в очень усредненной форме отражается классическими уравнениями Эйнштейна.
Не исключено, что гравитоны дадут неплохое начальное приближение для перехода к решению общей задачи о структуре пространства-времени в очень малых областях, вплоть до планковской. Квантование метрического поля при сохранении обычного смысла координат — операция не совсем последовательная. Но эта непоследовательность проявляется только вблизи планковской области, когда взаимодействие между гравитонами заведомо не мало, и они начинают интенсивно размножаться. В результате представления классической геометрии теряют смысл в очень малых объемах [127] .
127
Научно это выражается так: метрика испытывает большие квантовые флуктуации (случайные отклонения от средних значений), и нельзя обычным образом определить расстояние между парой точек.
Не понятен пока механизм гравитационного взаимодействия элементарных частиц. Хотелось бы верить, что в какой-то степени его можно будет описать моделью обмена гравитонами.
По имеющимся оценкам, особо актуальной эта проблема должна стать лишь при фантастически высоких энергиях сталкивающихся частиц Е = mРс2 — порядка 2 миллиардов Джоулей. В этом плане далекое будущее физики высоких энергий тоже упирается в проблему планковской области. Все дороги ведут в Рим!
Мечты о космическом микронаселении
Рассматривая картину ранних космологических стадий, трудно избежать одного древнейшего предрассудка. Речь идет о более или менее длительном периоде начального Хаоса, из которого постепенно и в довольно поздние сроки формируются структуры. Конечно, сейчас ученые не мыслят его в виде какого-то клубящегося античного океана — разыгрывается модель крайне горячего газа элементарных частиц, однако идея бесструктурности объектов ранней Вселенной играет важную роль. Вроде бы все верно, какие структуры могут образовываться в среде, чья температура измеряется миллиардами миллиардов градусов? Любая из них разрушится в самом зародыше…