Отсутствующая структура. Введение в семиологию
Шрифт:
Высокая энтропийность системы, которую представляют собой буквы на клавиатуре пишущей машинки, обеспечивает возможность получения очень большого количества информации. Пример описан Гильбо: машинописная страница вмещает 25 строк по 60 знаков в каждой, на клавиатуре 42 клавиши, и каждая из них позволяет напечатать две буквы, таким образом, с добавлением пробела, который тоже знак, общее количество возможных символов составит 85. Если, умножив 25 на 60, мы получаем 1500 позиций, то спрашивается, какое количество возможных комбинаций существует в этом случае для каждого из 85 знаков клавиатуры?
Общее число сообщений с длиной L, полученных с помощью клавиатуры, включающей С знаков, можно определить возводя L в степень С. В нашем случае это составит 85 в степени 1500 возможных сообщений. Такова ситуация равновероятности, существующая на уровне источника, и число возможных сообщений
Но сколько операций выбора надо совершить, чтобы идентифицировать одно-единственное сообщение? Очень и очень много, и их реализация потребовала бы значительных затрат времени и энергии – как нам известно, каждое из возможных сообщений включает 1500 знаков, каждый из которых определяется путем последовательных выборов между 85 символами клавиатуры… Потенциальная возможность источника, связанная со свободой выбора, чрезвычайно высока, но передача этой информации оказывается весьма затруднительной [23] .
23
G. Т. Guilbaud, La Cybern'etique, P. U. F., 1954.
III. 4. Здесь-то и возникает нужда в коде с его упорядочивающим действием. Но что дает нам введение кода? Ограничиваются комбинационные возможности задействованных элементов и число самих элементов. В ситуацию равновероятности источника вводится система вероятностей: одни комбинации становятся более, другие менее вероятными. Информационные возможности источника сокращаются, возможность передачи сообщений резко возрастает.
Шеннон [24] определяет информацию сообщения, включающего N операций выбора из h символов, как
24
Впервые закон сформулирован R. V. L. Harthley, Transmission of Information, in «Bell System Tech. J.», 1928. См. также, помимо Cherry, op. cit, Anatol Rapaport, What is Information}, in «ETC», № 10, 1953.
I = Nlg2h
(эта формула напоминает формулу энтропии).
Итак, сообщение, полученное на базе большого количества символов, число комбинаций которых достигает астрономической величины, оказывается высокоинформативным, но вместе с тем и непередаваемым, ибо для этого необходимо слишком большое число операций выбора. Но эти операции требуют затрат, идет ли речь об электрических сигналах, механическом движении или мышлении: всякий канал обладает ограниченной пропускной способностью, позволяя осуществить лишь определенное число операций выбора. Следовательно, чтобы сделать возможной передачу информации и построить сообщение, необходимо уменьшить значения N и h. И еще легче передать сообщение, полученное на основе системы элементов, число комбинаций которых заранее ограничено. Число выборов уменьшается, но зато возможности передачи сообщений возрастают.
Упорядочивающая функция кода как раз и позволяет осуществить коммуникацию, ибо код представляет собой систему вероятностей, которая накладывается на равновероятность исходной системы, обеспечивая тем самым возможность коммуникации. В любом случае информация нуждается в упорядочении не из-за ее объема, но потому, что иначе ее передача неосуществима.
С введением кода число альтернатив такого высокоэнтропийного источника, как клавиатура пишущей машинки, заметно сокращается. И когда я, человек знакомый с кодом итальянского языка, за нее сажусь, энтропия источника уменьшается, иными словами, речь идет уже не о 85 в степени 1500 сообщениях на одной машинописной странице, обеспечиваемых возможностями клавиатуры, но о значительно меньшем их числе в соответствии с вероятностью, отвечающей определенному набору ожиданий, и, стало быть, более предсказуемом. И даже если число возможных сообщений на страничке машинописного текста неизменно велико, все равно введенная кодом система вероятностей делает невозможным присутствие в моем сообщении таких последовательностей знаков, как «wxwxxsdewvxvxc», невозможных в итальянском языке за исключением особых случаев металингвистических описаний, подобных только что приведенным. Эта система не разрешает ставить «q» после «ass»,
Итак, в заключение дадим определение кода как системы, устанавливающей 1) репертуар противопоставленных друг другу символов; 2) правила их сочетания; $) окказионально взаимооднозначное соответствие каждого символа какому-то одному означаемому. При этом возможно выполнение лишь одного или двух из указанных условий [25] .
IV. Код
IV. 1. Все сказанное позволяет вернуться к нашей первоначальной модели.
25
Так, в нашем примере с механизмом исключается и. 3. Получаемым сигналам не соответствует какое-нибудь означаемое. (В крайнем случае можно говорить о соответствии лишь для того, кто установил код.)
В упоминавшемся водохранилище могут происходить самые разнообразные процессы. Уровень воды в нем может устанавливаться какой угодно. И если бы нужно было описать все возможные уровни, понадобился бы большой набор символов, хотя фактически нас не интересует, поднялась ли вода на один или на два миллиметра или опустилась на столько же. Во избежание этого приходится произвольно членить континуум, устанавливая дискретные единицы, пригодные для коммуникации и получающие статус смыслоразличителей. Допустим, нас интересует, поднялся ли уровень воды с отметки – 2 до отметки – 1; при этом совершенно не важно, на сколько сантиметров или миллиметров уровень воды превышает отметку – 2. Помимо уровней – 2 и – 1 все прочие для нас несущественны, мы их не принимаем во внимание. Таким образом формируется код, т. е. из многочисленных комбинаций четырех символов А, В, С и D выделяются некоторые, наиболее вероятные.
Например:
Итак, принимающее устройство должно быть отрегулировано таким образом, чтобы адекватно реагировать только на предусмотренные комбинации, пренебрегая всеми прочими как шумом. Ничто, впрочем, не препятствует тому, чтобы не принятые в расчет комбинации были использованы в случае, если возникнет необходимость более точного расчета уровней, естественно, что при этом изменится и код.
IV. 2. И теперь мы уже можем, говоря об информации как о возможности и свободе выбора, разграничить два значения этого понятия, по форме одинаковых, ведь речь идет об определенной степени свободы выбора, но по существу различных. В самом деле, у нас есть информация источника, которая в отсутствие гидро- и метеосводок, позволяющих предсказать повышение или понижение уровня воды, рассматривается как состояние равновероятности, вода может достигнуть какого угодно уровня.
Эта информация корректируется кодом, устанавливающим систему вероятностей. В статистическую неупорядоченность источника вносится упорядочивающее начало кода.
Но кроме того, у нас есть также информация кода. И действительно, на основе имеющегося кода мы можем составить семь равновероятных сообщений. Код вносит в физическую систему некий порядок, сокращая ее информационный потенциал, но по отношению к конкретным сообщениям, которые формируются на его основе, сам код в определенной мере оказывается системой равных вероятностей, упраздняемых при получении того или иного сообщения. Отдельное сообщение в его конкретной форме, будучи какой-то определенной последовательностью символов, представляет собой некую окончательную – ниже мы увидим, до какой степени – упорядоченность, которая накладывается на относительную неупорядоченность кода.
При этом нужно отметить, что такие понятия, как информация (противопоставленное «сообщению»), неупорядоченность (противопоставленное «упорядоченности»), равновероятность (в противовес системе вероятностей) являются все без исключения понятиями относительными. В сравнении с кодом, который ограничивает информационное поле источника, последний обладает известной энтропией, но по сравнению со сформированными на его основе сообщениями сам код тоже характеризуется определенной энтропией.