Парадоксы климата. Ледниковый период или обжигающий зной?
Шрифт:
Выше отмечалось, что доля антропогенного фактора в углеродном цикле исчисляется лишь немногими процентами, но, согласитесь, и ежегодное увеличение концентрации CO2 на 0,3–0,6 % по темпам вполне соизмеримо с размером антропогенного фактора (вышеупомянутыми 4 %). В пользу последней версии говорят следующие соображения. Во-первых, в биосфере Земли последний век не отмечен какими-либо глобальными изменениями, способными заметно повлиять на интенсивность процессов, упомянутых в версиях б и в. Во-вторых, наблюдаемого в течение ХХ века увеличения температуры воды в океане недостаточно для объяснения (в соответствии с физическими законами для жидкостей и газов) столь значительного роста атмосферной концентрации CO2. В-третьих, методы современного анализа позволяют оценить вклад сжигаемого топлива в общем изменении содержания углекислого газа в атмосфере с помощью соотношения изотопов12Си 14С, благодаря тому, что изотоп 14С практически
Проведенная оценка показывает сопоставимость темпов роста потребления топлива и увеличения содержания CO2 в атмосфере.
Упомянем еще об одной проблеме, связанной с увеличением содержания CO2, – биологической. Растворение дополнительной массы углекислого газа в морской воде влечет за собой увеличение уровня ее кислотности, а это, в свою очередь, представляет большую опасность для существования многих живых организмов. Так, лабораторные исследования показали, что увеличение кислотности морской воды губительно сказывается на раковинах моллюсков, известковых скелетах коралловых полипов, которые буквально разъедаются угольной кислотой.
Итак, увеличение атмосферной концентрации CO2 в ХХ столетии – непреложный, доказанный измерениями факт. И где-то на 2/3 глобальное потепление обусловлено именно этим фактом.
Как ни печально, но приходится признать, что сколь-нибудь существенно воздействовать на природный углеродный цикл мы не в состоянии, а, значит, контролировать содержание CO2 в атмосфере нам не по силам.
По большому счету, что-либо сделать можно лишь с теми самыми 4 % из «зоны нашей ответственности», но и эта задача, ой, как непроста: нужно повсеместно отказаться или хотя бы значительно сократить промышленное использование ископаемого топлива в ближайшие десятилетия. Такая цель поставлена, но вряд ли может быть осуществлена, поскольку требует глобальной и затратной модернизации мировой экономики, а также энергичных согласованных действий. Это путь, который еще только предстоит пройти. А пока зададимся вопросом: нет ли других путей, если не альтернативных, то дополняющих данный? Для этого рассмотрим другие парниковые газы.
Многоликий метан: второй по значимости парниковый газ
Природный газ – это кислород экономики, перекрывающий кислород экологии.
Упоминание о метане (CH4) у большинства людей обычно ассоциируется со взрывами и человеческими жертвами на угольных шахтах. «Явление метана народу», т. е. атмосфере, происходит по многим каналам. В их череде «шумный» выход метана на поверхность по стволам угольных шахт – канал, пожалуй, самый эпатажный, но совершенно не типичный. Как вскоре убедится читатель, метан предпочитает просачиваться в атмосферу без лишнего шума, тихой сапой. Между тем данные измерений свидетельствуют о том, что с начала индустриальной эпохи (около 1750 г.) содержание в атмосфере метана увеличилось в 2,5 раза (для сравнения: концентрация CO2 за тот же период возросла примерно на 30 %).
Повышенного внимания к себе метан заслужил благодаря его сегодняшнему вкладу в усиление парникового эффекта, оцениваемому в 20 %. Конечно, это не 60 %, вносимые углекислым газом, но, согласитесь, тоже немало – «твердое» второе место.
Замахнуться на гегемонию CO2 в обозримом будущем ему едва ли по силам, но тем не менее…
Молекула СН4 (рис. 17) в десятки раз эффективнее поглощает инфракрасное излучение, чем молекула CO2. Главенствущая же роль последнего достигается лишь тем, что количество молекул углекислого газа в атмосфере примерно в 200 раз превышает число молекул метана. Но поскольку концентрация СН4 в индустриальную эпоху росла гораздо быстрее концентрации CO2, очевидно, что при сохранении существующей тенденции уже в недалеком будущем вклад метана в усиление парникового эффекта будет еще более весомым.
Чтобы сократить темпы глобального потепления, резонно попытаться замедлить рост концентрации этого газа (как, впрочем, и других парниковых газов) в атмосфере. В этой связи насущно необходимо познакомиться с ним поближе.
Рис. 17. Шаростержневая модель молекулы метана
Содержание всякого газа в атмосфере определяется соотношением мощности его источников и стоков (т. е. разрушения в атмосферных химических реакциях и – для некоторых газов – вымывания осадками), а срок пребывания в атмосфере (время жизни) – совокупной скоростью его химического разрушения и механического удаления из атмосферы.
Атмосферная химия метана очень проста и не составляет какой-либо
В результате молекула СН4, по разным оценкам, живет в атмосфере 8–12 лет.
Рис. 18. Характерное содержание метана, ppbv (parts per billion by volume, 10–9 молекул на молекулу воздуха). В стратосфере разрушение метана гидроксилом приводит к образованию другого важного парникового газа – водяного пара
Химическим путем метан не образуется, поскольку для синтеза его молекул необходимо большое количество энергии. Поэтому атмосферные источники СН4 отсутствуют, и поступление метана в атмосфере полностью определяется его потоками с поверхности Земли (рис. 18). Метан возникает и накапливается в недрах Земли в среде, где гниение отмершей растительности происходит при дефиците свободного кислорода. Таким образом, среди источников метана преобладают микробиологические процессы с участием анаэробных метанобразующих бактерий:
Молекулярный водород (Н2) для осуществления этой реакции выделяется бактериями, не синтезирующими метан, но развивающимися в той же самой среде, что и метаногены. Метан продуцируют также жвачные млекопитающие (в первую очередь, крупный рогатый скот), в кишечнике которых создаются оптимальные условия для существования выделяющих метан микроорганизмов. По оценке Н. М. Бажина [14] , «продуктивность» одной коровы составляет 250 л СН4 (целая бочка!) в сутки.
14
Бажин Н. М. Метан в атмосфере, http://www.pereplet.ru/obrazovanie/stsoros/958.html.
Все источники метана обычно делят на две большие группы: естественные и антропогенные. К первым относят потоки СН4 с поверхности заболоченных территорий, пресноводных водоемов, океанической поверхности, а также метан, образующийся в колониях термитов и выделяемый при сжигании огромных объемов биомассы в результате пожаров.
Здесь необходимо небольшое отступление. Определение суммарного количества метана, поступающего в атмосферу от каждого из источников, – несомненно, важная, но вряд ли решаемая инструментальными средствами задача. Поток СН4, например, с поверхности заболоченных территорий, существенно зависит от температуры поверхности, типа болота (торфяного, сфагнового и др.), характера растительности и ее плотности, наличия или отсутствия воды на поверхности и других факторов. Поскольку заболоченные территории встречаются довольно часто (исключая полярные области), и каждой местности присущи свой климатический режим и своя растительность, величины потока СН4 с разных увлажненных территорий будут заметно различаться, а организация регулярных измерений потока СН4 в столь большом количестве мест практически неосуществима. Да и смешно представить каждую корову (лошадь, козу и пр.) с индивидуальным датчиком, замеры которого регулярно собирались бы и аккуратно архивировались. А поэтому мощность каждого источника метана определяется с помощью решения обратной задачи: подбирается значение, которое, будучи подставленным в модель, обеспечивало бы максимальное соответствие расчетных концентраций СН4 измеренным. Естественно, получаемые оценки зависят от класса и особенностей используемой модели и заметно различаются у разных авторов. Обзор таких экспертных оценок и комментарии к ним приведены в Scientific Assessment of Ozone Depletion, 1994 [15] . Далее мы воспользуемся именно этим источником. Давность указанной публикации не должна смущать читателя. Несомненно, за почти 20 лет, прошедших с момента ее выхода в свет, приведенные оценки как-то изменились, однако с абсолютной уверенностью можно утверждать, что они не вышли за рамки разброса приведенных в этом обзоре значений. В такой ситуации мы не ставим перед собой задачу сообщить читателю «последние известия с метаноносных полей» и призываем рассматривать приведенные ниже числа лишь для получения представления о порядке величины отдельных источников и соотношении между ними. Однако вернемся к обсуждению существующих источников метана.
15
WMO Global Ozone Research and Monitoring Project. Report № 37. Geneva, 1994.