Параллельное и распределенное программирование на С++
Шрифт:
void exit(int status);
void abort(void) ;
Функцию kill можно использовать для принудительного завершения другого процесса. Эта функция отправляет сигнал процессам, заданным параметром pid. Параметр sig — это сигнал, предназначенный для отправки заданному процессу. Возможные сигналы перечислены в заголовке <signal.h>. Для уничтожения процесса параметр sig должен иметь значение SIGKILL. Чтобы иметь право отсылать сигнал процессу, вызывающий процесс должен обладать соответствующими привилегиями, либо его реальный или идентификатор эффективного пользователя должен совпадать
Вызывающий процесс может отправить сигнал одному или нескольким процессам при таких условиях.
pid > 0 Сигнал будет отослан процессу, идентификатор (PID) которого равен значению параметра pid.
pid = 0 Сигнал будет отослан всем процессам, у которых идентификатор группы процессов совпадает с идентификатором вызывающего процесса.
pid = – 1 Сигнал будет отослан всем процессам, для которых вызывающий процесс имеет разрешение отправлять этот сигнал.
pid < – 1 Сигнал будет отослан всем процессам, у которых идентификатор группы процессов равен абсолютному значению параметра pid, и для которых вызывающий процесс имеет разрешение отправлять этот сигнал.
Синопсис
#include <signal.h>
int kill(pid_t pid, int sig)
Ресурсы процессов
При выполнении возложенной на процесс задачи часто приходится записывать Данные в файл, отправлять их на принтер или отображать полученные результаты на э к ране. Процессу могут понадобиться данные, вводимые пользователем с клавиатуры или содержащиеся в файле. Кроме того, процессы в качестве ресурса могут использовать другие процессы, например, подпрограммы. Подпрограммы, файлы, семафоры, мьютексы, клавиатуры и экраны дисплеев — все это примеры ресурсов, которые может затребовать процесс. Под ресурсом понимается все то, что использует процесс в любое заданное время в качестве источника данных, средств обработки, вычислений или отображения информации.
Чтобы процесс получил доступ к ресурсу, он должен сначала сделать запрос, обратившись с ним к операционной системе. Если ресурс свободен, операционная система позволит процессу его использовать. После использования ресурса процесс освобождает его, чтобы он стал доступным для других процессов. Если ресурс недоступен, запрос отвергается, и процесс должен подождать его освобождения. Как только ресурс станет доступным, процесс активизируется. Таков базовый подход к распределению ресурсов между процессами. На рис. 3.11 показан граф распределения ресурсов, по которому можно понять, какие процессы удерживают ресурсы, а какие их ожидают. Так, процесс В делает запрос на ресурс 2, который удерживается процессом С. Процесс С делает запрос на ресурс 3, который удерживается процессом D.
Рис. 3.11. Граф распределения ресурсов, который показывает, какие процессы удерживают ресурсы, а какие их запрашивают
Если удовлетворяется сразу несколько запросов на получение доступа к ресурсу, этот ресурс является совместно используемым, или разделяемым (эта ситуация также отображена на рис. 3.11). Процесс А разделяет ресурс R 1 с процессом D. Разделяемые ресурсы могут допускать параллельный доступ сразу нескольких процессов или разрешать доступ только одному процессу в течение ограниченного промежутка времени, после чего аналогичным доступом сможет
Одни ресурсы могут изменяться или модифицироваться процессами, а другие^ нет. Поведение разделяемых модифицируемых или немодифицируемых ресурсов определяется типом ресурса.
§ 3.1 • Граф распределения ресурсов ,
Графы распределения ресурсов — это направленные графы, которые показывают, как распределяются ресурсы в системе. Такой граф состоит из множества вершин V множества ребер E. Множество вершин делится на две категории:
P = {P 1 , P 2 ,..., Pn)
R = {R 1 , R 2 ,..., Rm}
Множество P— это множество всех процессов, а R— это множество всех ресурсов в системе Ребро, направленное от процесса к ресурсу, называется ребром запроса, а ребро, направленное от ресурса к процессу, называется ребром назначения. Направленные ребра обозначаются следующим образом:
P i– > R j Ребро запроса: процесс Р i запрашивает экземпляр типа ресурса R j
R j– > P i . Ребро назначения: экземпляр типа ресурса R j выделен процессу P i ;
Каждый процесс в графе распределения ресурсов отображается кругом, а каждый ресурс — прямоугольником. Поскольку может быть много экземпляров одного типа ресурса, то каждый из них представляется точкой внутри прямоугольника. Ребро запроса указывает на периметр прямоугольника ресурса, а ребро назначения берет начало из точки и касается периметра круга процесса.
Граф распределения ресурсов, показанный на рис. 3.11, отображает следующее.
Множества P, R и E
P={P a , P b , P c , P d }
R={R 1 ,R 2 ,R 3 }
E = {R 1– > P a , R 1– > P d , P b– > R 2 , R 2– > P c , P c– > R 3 , R 3– > P d }
Типы ресурсов
Существуют три основных типа ресурсов: аппаратные, информационные и программные. Аппаратные ресурсы представляют собой физические устройства, подключенные к компьютеру (например, процессоры, основная память и все устройства ввода-вывода, включая принтеры, жесткий диск, накопитель на магнитной ленте, дисковод с zip-архивом, мониторы, клавиатуры, звуковые, сетевые и графические карты, а также модемы. Все эти устройства могут совместно использовать несколько процессов.