Чтение онлайн

на главную

Жанры

Питание и долголетие

Медведев Жорес

Шрифт:

В 1961 г. Индия, население которой приближалось к половине миллиарда, оказалась на грани массового голода. Для реформы сельского хозяйства правительство страны пригласило тогда уже известного селекционера Нормана Борлауга (Norman Borlaug), новые сорта пшеницы которого превратили Мексику из импортера в экспортера зерна. Борлауг вел гибридизацию и селекцию зерновых на уменьшение массы листьев и увеличение размеров колоса. В естественных биоценозах колос злаковых – это орган их размножения, а стебель должен быть высоким, чтобы пробиться к свету в окружении других растений. На возделанном поле такой необходимости нет, и выведенные Борлаугом карликовые растения могли давать с гектара такое же количество зерна, как и традиционные высокие сорта. К тому же, имея меньшую поверхность листьев, они требовали меньше влаги и были необыкновенно засухоустойчивыми. Применяемые на полях удобрения в большей степени шли на формирование зерен, а не листьев и стебля. Такую селекционную технологию применили и для получения новых сортов риса. К 1968 г. в Индии уже внедрялись карликовые сорта, которые при оптимальном удобрении давали 100 центнеров риса с гектара. В течение пяти лет производство риса в Индии удвоилось, а затем и утроилось. Этот успех известен в современной истории земледелия как «зеленая революция». В 1974 г. Всемирная конференция по продовольствию в Риме приняла программу полного

искоренения голода на Земле в течение десяти лет. «…ни один мужчина, женщина или ребенок не будут ложиться спать голодными», – заявил на конференции, при всеобщем одобрении, Генри Киссинджер [1].

В 1961 г. мировое производство зерна в расчете на каждого жителя планеты составило 261 кг, а к 1985 г. оно выросло до 343 кг. Но затем этот показатель начал снижаться: в 1988 г. он упал до 306 кг, а к 1995-му – до 301 кг. Число голодающих в мире не уменьшалось, а росло, достигнув 1 млрд человек в 1996 г. Основной причиной этого стало не сокращение урожаев, а слишком быстрый рост населения планеты, превысившего 6 млрд [2]. В Индии и Китае, суммарное население которых составило к концу XX в. 2,3 млрд, не было голода, и эти страны продолжали оставаться основными экспортерами риса. Главные очаги недостаточного питания переместились в Африку и в те страны Азии и Южной Америки, в которых основным источником калорий были не рис или пшеница, а кукуруза, урожайность которой достигла максимума значительно раньше. В 1965 – 1985 гг. урожаи кукурузы росли медленнее, чем урожаи риса и пшеницы. Кукуруза гораздо беднее белком, чем рис или пшеница. Поэтому в обширных очагах голодания проблема осложнялась белковой недостаточностью питания. В создавшейся ситуации основные надежды в борьбе с голодом стали возлагать не на традиционную гибридизацию и селекцию, а на открытую именно в то время генетическую инженерию, которая давала возможность не просто увеличить урожаи, а изменить состав зерна. Одним из проектов генетических модификаций растений стала, естественно, и попытка улучшить качественный аминокислотный состав белков кукурузы путем внедрения в ее клетки генов новых ферментативных систем. Генетическая инженерия обещала не только увеличить биологическую полноценность продовольственных культур, ни и улучшить их вкусовые качества и даже объединить питательные и лечебные свойства растений.

Возможности генетики и реальности экономики

Нередко суть аргументов в пользу генетических модификаций состоит в том, что, создавая такие модификации, ученые делают ту же самую работу, которой в течение тысячелетий занимались селекционеры, скрещивая разные сорта растений и объединяя таким образом их генетические системы. В действительности между гибридизацией и генетическими модификациями существует принципиальное различие. При традиционной гибридизации скрещивания проводятся внутри видов, пшеницу скрещивают с пшеницей, рожь с рожью. Иногда удается скрещивать и разные, но близкородственные виды. Таким образом, например, удалось получить пшенично-пырейные гибриды. Всем известны мулы – гибриды лошади и осла. Но между представителями более отдаленных видов половая гибридизация уже невозможна. При трансгенной гибридизации нет природных ограничений. В геном пшеницы можно ввести генные комплексы или отдельные гены воробья, трески или холерного вибриона. Это осуществляется не путем полового скрещивания, а путем впрыскивания с помощью ультрамикропипеток в ядро яйцеклетки ДНК, выделенной из других растений, бактерий или животных. Новая ДНК встраивается в геном яйцеклетки, приводя к образованию трансгенного растения или животного. Внедрение новых генов в нужный участок хромосом не всегда происходит удачно, и из полученных трансгенных растений проводится отбор. Аналогичные процессы происходят и в природе при вирусных инфекциях. Вирус, например, гепатита B или иммунодефицита, попадая в кровь, внедряется в первом случае в ДНК хромосом клеток печени, а во втором – в ДНК хромосом лимфоцитов крови. Эти вирусы размножаются вместе с размножением клеток. В эволюции животных и растений вирусная ДНК может переходить из поколения в поколение, модифицируясь иногда в полезный ген. Геномы человека, животных и растений содержат много участков ДНК, которые попали в хромосомы в результате вирусных инфекций миллионы лет назад и были постепенно инактивированы. Это один из вариантов генетической изменчивости. Такой же способностью внед рять свою ДНК в геномы бактерий обладают бактериофаги. Исследователи освоили этот механизм для внедрения в хромосомы новых генов. Именно таким образом в геном бактерий был «вшит» ген гормона человеческого инсулина, необходимого больным диабетом. В прошлом инсулин для инъекций получали из поджелудочной железы свиней путем очень сложных процедур. Инсулин, получаемый из культур бактерий, намного дешевле, и в настоящее время около 80% больных диабетом получают инъекции трансгенного инсулина.

В 1974 – 1975 гг., когда трансгенная технология была открыта в США, многие ученые предлагали ввести мораторий на исследования в этой области. Но джинна уже выпустили из бутылки. К этому времени наука разработала способ изоляции отдельных генов и групп генов из разных клеток и активно занялась расшифровкой полных геномов различных бактерий, растений, животных, а вскоре и человека. В генетике возникло новое направление «геномика».

Подробности многих интересных трансгенных рекомбинаций невозможно описать по той простой причине, что они засекречены. Дело в том, что генетическая инженерия может работать не только на пользу человеку, но и во вред, создавая суперлетальные формы биологического оружия. Если, например, кишечной палочке добавить не ген инсулина, а ген ботулина, сильнейшего биотоксина, то эта кишечная палочка станет биологическим оружием массового уничтожения. Такое оружие страшнее атомного, так как его легче создать, но практически невозможно уничтожить. Кукуруза, получившая гены устойчивости к гербицидам, доминирует в настоящее время в агробизнесе США. Но если те же гены сверхустойчивости к гербицидам будут внедрены в злостные сорняки, например в пырей, то это может стать катастрофой для сельского хозяйства. Именно поэтому существует система засекречивания биотехнологических методов. В связи с этим понятен протест многочисленных групп и организаций против распространения трансгенных технологий.

Монопольные тенденции в США

В 1970-х годах трансгенная технология позволяла ученым осуществлять многочисленные манипуляции с отдельными генами или группами генов. Геном растений и животных состоит из двойных спиралей ДНК, локализованных в хромосомах. При нагревании в растворах двойные спирали раскручиваются на однонитчатые ДНК, из которых можно «вырезать» отдельные фрагменты – гены. Эти гены можно копировать с помощью ДНК-полимераз. Такой процесс размножения генов, называемый амплификацией, осуществляется в настоящее время особыми приборами. Именно благодаря возможности амплификации ДНК ученым (а при расследовании преступлений – полиции) достаточно иметь ничтожное количество материала, иногда небольшое пятно крови или один волосок, чтобы установить генетический профиль человека. Вирусы имеют особые ферментативные системы, позволяющие им проникать внутрь клеток, внутрь хромосом, а затем встраиваться в ДНК клетки хозяина. Вирус, таким образом, становится частью генома. Он может долго не проявляться. Скрытые, латентные формы вирусных инфекций (герпеса, гепатитов, иммунодефицита и др.) могут длиться месяцы или даже годы, а иногда и всю жизнь. Однако вирусную частицу, размножаемую в культурах клеток, можно инактивировать и присоединить к ней полезный ген, например инсулина, гормона роста, альбумина молока и т. д. После этого такой ген можно внедрить в клетки, в которых этого гена не было. Таким образом получают трансгенный организм, обладающий новыми свойствами. Яйцеклетка коровы, в которую внедряется ген человеческого молочного альбумина, может привести к рождению теленка, который, став коровой, будет давать молоко не только с коровьим, но и человеческим альбумином.

В этот период в США были начаты работы по обширной программе «Геном человека», в которой участвовали сотни лабораторий. На ее финансирование правительство выделило несколько миллиардов долларов. Почти каждую неделю публиковались сообщения об открытии генов разных белков, иногда с аномалиями, объяснявшими природу некоторых генетических болезней и синдромов. Делались многочисленные попытки открытия гена или генов, определяющих продолжительность жизни у разных видов животных.

В условиях фактически монополии США на открытия, изоляцию и амплификацию генов возникла проблема собственности на гены. Имеет ли ученый, открывший и размноживший ген для синтеза гормона X, авторское право (copyright) на этот ген? Может ли он получить патент и собирать гонорары с тех лабораторий, институтов или клиник, которые используют его методику? В прошлом патенты на открываемые природные вещества не выдавались. На пенициллин и другие антибиотики нет патентов, хотя новые оригинальные технологии по их выделению из грибков можно запатентовать. В 1980 г. Верховный суд США, рассматривавший аргументы за и против, разрешил патентовать гены. Конгресс США принял новый «Акт о патентах», позволив ученым, лабораториям и биотехнологическим компаниям получать патенты на генетические компоненты, гены и трансгенные организмы. Эта «продукция» переходила в категорию «интеллектуальной собственности».

В соответствии с принятым законом семена трансгенных растений с новыми свойствами можно покупать только у тех компаний, которые являются их легальными собственниками. Фермер может, например, покупать семена трансгенной кукурузы, устойчивой к паразитам или к гербицидам, для текущего посева, но не имеет права оставлять часть своего урожая на семена для следующего сезона. В новом году он должен опять закупать семенной материал у компаний, нередко находящихся в сотнях километров от его полей. Такая практика противоречит тысячелетним традициям земледелия. Нарушения были нередкими и рассматривались в сотнях судебных исков. Практика обязательной покупки семян для новых посевов ограничила возможности использования трансгенных культур, особенно в тех странах, где преобладают мелкие семейные фермы, а это характерно не только для Азии и Африки, но и для многих стран Европы. Крупные фермы в США и весь комплекс агробизнеса в Америке получили безусловное преимущество в использовании трансгенных культур. К 2000 г. Патентное бюро США выдало сотни патентов на трансгенные растения и животных. Срок исключительного права был определен в 17 лет. Этими законодательными ограничениями и объясняется то, что к 2007 г. больее 90% всех сельскохозяйственных площадей, занятых трансгенными культурами, находились на американском континенте: в США, Аргентине, Бразилии и в Канаде [3].

Трансгенные культуры и проблема голода

УЛУЧШЕНИЕ КАЧЕСТВА БЕЛКОВ КУКУРУЗЫ

Кукуруза является основным продуктом питания для 1,5 млрд человек – жителей Южной и Центральной Америки, Мексики, Африки, засушливых районов Азии и горных районов Закавказья. В США кукуруза выращивается в основном как кормовая и техническая культура и на экспорт как продовольственная и кормовая. Из всех зерновых культур кукуруза наиболее урожайная. Однако белки кукурузы, основным из которых является зеин, бедны по двум незаменимым аминокислотам – триптофану и лизину. Содержание триптофана в белках кукурузы составляет лишь 0,7%, что почти в два раза меньше, чем в белках пшеницы, риса или сои. Содержание лизина в белках кукурузы (2,7%) ниже, чем в белках ржи (4,1%), и значительно ниже, чем в белках сои (6,9%). Поэтому белок кукурузы считается неполноценным. Преобладание кукурузы в питании населения приводило в прошлом к широкому распространению белковой недостаточности и тяжелой болезни пеллагры, связанной с дефицитом витамина ниацина (или никотиновой кислоты), который является производным обмена триптофана. Пеллагру, которая и в настоящее время диагностируется у миллионов людей, можно успешно лечить не только ниацином, но и полноценной белковой диетой. Эта болезнь была распространена в некоторых провинциях Испании, Италии и Франции, где в начале прошлого века население предпочитало кукурузу менее урожайной пшенице.

Одним из первых проектов по улучшению качества питания в бедных странах и искоренению пеллагры стал проект создания трансгенной кукурузы с повышенным содержанием триптофана. Уже в 1985 г. в США был выдан патент на кукурузу, зерна которой были богаты триптофаном. Детали методик создания этой кукурузы не публиковались. Было, однако, очевидно, что дополнительный триптофан не входил в состав белков кукурузы, а продуцировался бактериальными ферментами как свободная аминокислота. В геном кукурузы были введены бактериальные гены. Дополнительный триптофан, присутствовавший в зернах кукурузы не в составе белков, оказался токсичным, так как его концентрация в крови не была сбалансирована другими аминокислотами. Потребление такой триптофан-богатой кукурузы вызывало боль в мышцах, слабость, увеличение лимфоцитов и другие симптомы, которые первоначально классифицировали как новую болезнь [4]. Триптофан-обогащенная кукуруза, просуществовав пять лет, была запрещена для культивации.

Таким же образом в течение многих лет пытались получить трансгенную кукурузу, зерна которой были бы обогащены лизином. При этом были учтены ошибки предыдущих опытов, и ученые пытались не просто добавить лизин в зерна кукурузы, а уменьшить содержание в зернах зеина, бедного триптофаном и лизином, и увеличить содержание других белков путем амплификации их генов. Первые успехи в этом проекте были достигнуты в 2006 г. [5]. Однако запатентованные трансгенные сорта кукурузы с увеличенным содержанием более полноценных белков пока используются в небольших объемах лишь для кормления скота.

Поделиться:
Популярные книги

Курсант: назад в СССР 2

Дамиров Рафаэль
2. Курсант
Фантастика:
попаданцы
альтернативная история
6.33
рейтинг книги
Курсант: назад в СССР 2

На границе империй. Том 9. Часть 3

INDIGO
16. Фортуна дама переменчивая
Фантастика:
космическая фантастика
попаданцы
5.00
рейтинг книги
На границе империй. Том 9. Часть 3

Ведьма и Вожак

Суббота Светлана
Фантастика:
фэнтези
7.88
рейтинг книги
Ведьма и Вожак

Дурашка в столичной академии

Свободина Виктория
Фантастика:
фэнтези
7.80
рейтинг книги
Дурашка в столичной академии

Барон устанавливает правила

Ренгач Евгений
6. Закон сильного
Старинная литература:
прочая старинная литература
5.00
рейтинг книги
Барон устанавливает правила

Провинциал. Книга 3

Лопарев Игорь Викторович
3. Провинциал
Фантастика:
космическая фантастика
рпг
аниме
5.00
рейтинг книги
Провинциал. Книга 3

Темный Лекарь

Токсик Саша
1. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь

Вираж бытия

Ланцов Михаил Алексеевич
1. Фрунзе
Фантастика:
героическая фантастика
попаданцы
альтернативная история
6.86
рейтинг книги
Вираж бытия

Газлайтер. Том 1

Володин Григорий
1. История Телепата
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Газлайтер. Том 1

Я – Орк

Лисицин Евгений
1. Я — Орк
Фантастика:
юмористическая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я – Орк

Совок 9

Агарев Вадим
9. Совок
Фантастика:
попаданцы
альтернативная история
7.50
рейтинг книги
Совок 9

Последняя Арена 11

Греков Сергей
11. Последняя Арена
Фантастика:
фэнтези
боевая фантастика
рпг
5.00
рейтинг книги
Последняя Арена 11

По осколкам твоего сердца

Джейн Анна
2. Хулиган и новенькая
Любовные романы:
современные любовные романы
5.56
рейтинг книги
По осколкам твоего сердца

Тринадцатый III

NikL
3. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Тринадцатый III