Чтение онлайн

на главную

Жанры

Шрифт:

Процесс этот исключительно сложен. Гораздо легче обсуждать космические явления, образование планет.

Конечно, и здесь есть масса неясных моментов. Но тем не менее физика гораздо более простая наука, чем молекулярная биология. Даже если считать, что современная физика началась с Ньютона, то наука эта весьма преклонного возраста. А молекулярной биологии (будем считать днем ее рождения открытие двойной спирали ДНК) нет еще и тридцати лет.

Физика проста потому, что она имеет дело с малым числом изучаемых объектов. Можно в рамках физических законов описать поведение

материальной точки, можно описать взаимодействие двух тел. Знаменитая задача трех тел уже вызывает определенные трудности.

Когда физик хочет описать поведение молекул газа, ему трудно вычислить траекторию каждой отдельно взятой молекулы. В этом случае он пользуется законами статистической физики и описывает поведение коллектива молекул.

А в молекулярной биологии? Нам нужно знать, как ведет себя каждый из трех тысяч белков кишечной палочки, каждый фермент, каждая молекула нуклеиновой кислоты. Причем ясно, что в конечном итоге все процессы в клетке определяются законами физики. Но как с точки зрения физики описать полностью эти процессы, мы пока не знаем.

Сейчас в молекулярной биологии эпоха накопления фактического материала, и попытаемся пока просто на основании имеющихся данных поглядеть, каким же образом клетка печатает свои собственные копии, размножается.

Для этого ей нужно сделать две вещи.

Первое - снабдить потомство информацией о том, что ему надлежит делать в этом мире. Иными словами, передать генофонд, молекулы ДНК.

Второе - взрастить внутри себя полноценного "ребенка", копию. Для этого бактериальная клетка, дерево, животное обязаны уметь синтезировать белки, которые и делают растущий организм жизнеспособным.

Эти процессы идут повсеместно в мире живого. И в обоих этих процессах участвуют белки. Как происходит редупликация ДНК - передача генофонда, говорилось в предыдущей главе. А матричный синтез белков?

Попробуем разобраться в этом отнюдь не простом вопросе. Кстати говоря, совершенно ясно, что живой организм строит белки не только в цикле размножения, но и во время всей своей жизни, например, в процессе роста.

Итак, клетке потребовалось построить какой-либо белок. И вот наша молекулярная фабрика берется за дело. По строгому правилу, которое называется центральной догмой, или центральным постулатом молекулярной биологии, последовательно начинают работать отдельные цехи фабрики.

Что же это такое - центральная догма, сформулированная впервые Ф. Криком?

Догма указывает путь передачи информации в живых системах от ДНК до белка. Она (догма) утверждает, что информация о синтезе белков хранится в ДНК.

Поток информации начинается тогда, когда информация с ДНК "переписывается" на молекулу РНК. Этот процесс называется транскрипцией, а одноцепочечная молекула РНК, которая образуется, как на матрице, на молекуле ДНК, называется матричной, или информационной.

В принципе этот процесс похож на процесс редупликации ДНК, но в случае транскрипции с ДНК считывается лишь определенный, нужный в данный момент клетке участок (ген).

Далее уже на матричной РНК с участием рибосом,

определенных ферментов, специальных так называемых транспортных РНК и происходит сборка белковой молекулы. Этот последний этап процесса синтеза белка называется трансляцией.

Центральный постулат утверждает, таким образом, что поток информации во всех живых организмах идет только в одном направлении - от ДНК через РНК к белку. Другими словами, ДНК "знает" о белке все. Белок "не знает" о ДНК и не может повлиять на последовательность нуклеотйдов в ДНК. Более того, если бы нашелся организм, функционирующий по принципу белок - ДНК, это заставило бы нас пересмотреть основные положения молекулярной генетики и биологии.

Казалось бы, все просто: есть матрица, а на ней строится белок. Но простоты здесь нет никакой.

Разберем более подробно, каким же образом происходит синтез белковых молекул.

Так же как и при описаний репликация ДНК, мы постараемся подчеркнуть нерешенные вопросы в процессах матричного синтеза, чтобы сделать более контрастной стержневую идею о глубине разрыва между макромолекулами и функционирующей клеткой.

Сегодня на основании большого числа опытных данных можно считать твердо установленным, что план построения клеточных белков записан в молекуле ДНК.

К такому выводу ученые пришли, конечно, не сразу, хотя проблема передачи наследственной информации возникла еще во времена Ф. Мишера и Г. Менделя.

На рубеже XIX и XX веков лишь отдельные естествоиспытатели понимали всю принципиальную важность и сложность проблемы воспроизведения копии живого организма и передачи наследственной информации.

Работы русского химика профессора А. Колли, выполненные почти столетие назад, показали, что наследственное вещество в бактериальной клетке составляет очень малую часть от общего числа молекул в ней.

И данные Колли натолкнули академика Н. Кольцова на идею о матричном синтезе белков. Однако Кольцов представлял себе поток информации в виде схемы белок - белок. Он думал, что "каждая белковая молекула возникает из белковой молекулы путем кристаллизации вокруг нее находящихся в растворе аминокислот и других белковых обломков".

Весь процесс построения белка, как мы сейчас знаем, происходит не так и гораздо сложнее, но идея матричного синтеза, впервые высказанная Кольцовым в двадцатых годах нашего века, оказала неоценимое влияние на все последующее развитие молекулярной биологии.

Если отвлечься на время от химических аспектов взаимодействия аминокислот с РНК, то проблему генетического кода можно рассматривать просто как проблему перевода текста с одного алфавита на другой.

Молекулу белка можно представить себе как фразу с определенным смыслом. Ну, например, "Яумеюпомогатьорганизмувперевариваниипищи". Не очень длинная фраза, не очень сложный белок - всего 40 аминокислотных остатков. Каждая буква в этой фразе - аминокислота. Но только в отличие от русского алфавита в аминокислотном языке всего двадцать букв. Стоит переставить местами несколько букв во фразе, и она потеряет смысл.

Поделиться:
Популярные книги

Камень

Минин Станислав
1. Камень
Фантастика:
боевая фантастика
6.80
рейтинг книги
Камень

Огненный князь 4

Машуков Тимур
4. Багряный восход
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Огненный князь 4

Путь Чести

Щукин Иван
3. Жизни Архимага
Фантастика:
фэнтези
боевая фантастика
6.43
рейтинг книги
Путь Чести

Неудержимый. Книга XIX

Боярский Андрей
19. Неудержимый
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Неудержимый. Книга XIX

Физрук 2: назад в СССР

Гуров Валерий Александрович
2. Физрук
Фантастика:
попаданцы
альтернативная история
5.00
рейтинг книги
Физрук 2: назад в СССР

Камень. Книга шестая

Минин Станислав
6. Камень
Фантастика:
боевая фантастика
7.64
рейтинг книги
Камень. Книга шестая

Para bellum

Ланцов Михаил Алексеевич
4. Фрунзе
Фантастика:
попаданцы
альтернативная история
6.60
рейтинг книги
Para bellum

Девятое правило дворянина

Герда Александр
9. Истинный дворянин
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Девятое правило дворянина

Делегат

Астахов Евгений Евгеньевич
6. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Делегат

Шериф

Астахов Евгений Евгеньевич
2. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
6.25
рейтинг книги
Шериф

Мимик нового Мира 14

Северный Лис
13. Мимик!
Фантастика:
юмористическое фэнтези
постапокалипсис
рпг
5.00
рейтинг книги
Мимик нового Мира 14

Черный Маг Императора 9

Герда Александр
9. Черный маг императора
Фантастика:
юмористическое фэнтези
попаданцы
аниме
5.00
рейтинг книги
Черный Маг Императора 9

Темный Лекарь 4

Токсик Саша
4. Темный Лекарь
Фантастика:
фэнтези
аниме
5.00
рейтинг книги
Темный Лекарь 4

Возвышение Меркурия. Книга 14

Кронос Александр
14. Меркурий
Фантастика:
попаданцы
аниме
5.00
рейтинг книги
Возвышение Меркурия. Книга 14