Чтение онлайн

на главную

Жанры

Шрифт:

Структура клеточных нуклеиновых кислот идеальна.

Это законченное молекулярное архитектурное сооружение. Нуклеиновые кислоты - полимеры нуклеотидов, и в клетке нуклеотиды соединяются между собой всегда по одному и тому же правилу. Мы помним, что пентозы пятиуглеродные циклические сахара. Так вот, в нуклеиновых кислотах связь между нуклеотидами осуществляется через фосфатную группу, которая соединяет совершенно определенный атом углерода в пентозе одного нуклеотида с другим всегда одним и тем же (из пяти возможных) атомом углерода в пентозе другого нуклеотида. А в колбе получается хаос. Эта та же ситуация, которая случается с ребенком, когда он впервые открывает игрушку-конструктор. Чтобы построить что-нибудь стоящее, необходимо прикладывать

одну деталь к другой определенным образом. Природа умеет это делать, а химики пока нет.

Кроме того, клетка способна создавать информацию.

И это главное.

Глава VII

КЛЕТКИ РАБОТАЮТ

Существует очень простой факт, хорошо известный биологам. Он заключается в следующем. Для создания" а точнее, для биологического синтеза своих компонентов клетка должна получить из окружающей среды не только строительный материал, но и энергию. Когда клетка питается, например, глюкозой, она окисляет ее до углекислого газа и воды. В результате распада глюкозы выделяется энергия, которую клетка использует для всех своих нужд, в частности, для построения самых различных молекул, На примере процесса брожения посмотрим, как происходит распад глюкозы в живом организме. Этот процесс был известен еще во времена неолита, когда древние люди научились превращать виноградный сок в вино, Египтяне приписывали изобретение виноделия богу Озирису, а библейские сказания связывают это великое открытие с именем Ноя. Древние греки также видели здесь руку богов и прославляли Дионисия. Римляне - Вакха. Но природу брожения, так же как и природу многих физических явлений, удалось объяснить лишь в XIX веке. Сделал это французский физик Гей-Люссак.

Он установил, что в процессе брожения из глюкозы получается этиловый спирт и углекислый газ. При этом высвобождается энергия, которую клетка запасает в фосфатных связях упоминавшихся уже молекул аденозинтрофосфорной кислоты (АТФ). Для полной реализации всего процесса необходимо около двух тысяч химических реакций, которые и происходят во время брожения, причем с невероятной точностью.

Люди, я имею в виду не организм, а общество, получают необходимую энергию главным образом за счет распада химических связей, заключенных в горючих материалах: угле, нефти, дереве и так далее. Хорошо известно, что из-за легкомысленного отношения к природным ресурсам и низкого коэффициента полезного действия процессов сжигания топлива человечеству грозит глобальный энергетический кризис. Клетка же получает более 50 процентов всей освободившейся при окислении энергии в форме энергии фосфатных связей АТФ. Для сравнения скажем, что в технике редко удается превратить в механическую или электрическую энергию более трети тепловой энергии, Освобождающейся при сгорании.

Заметим, что клетке приходится добывать и использовать энергию в условиях практически постоянной и сравнительно низкой температуры. На протяжении миллиардов лет эволюции органического мира клетка приспособила свои удивительные молекулярные механизмы для эффективной работы в этих мягких условиях.

Биологи делят все живое на Земле в зависимости от способа питания на две основные группы.

Организмы, например, люди и животные, которые питаются сложными органическими соединениями, называются гетеротрофами. Им необходим постоянный приток горючего сложного химического состава (углеводы, белки, жиры). Гетеротрофные организмы получают энергию, окисляя эти сложные вещества. Запасенная энергия используется практически для всех нужд организма.

При этом, как установил еще Гей-Люссак, в атмосферу выделяется двуокись углерода.

Вторая группа организмов называется автотрофами.

Их подавляющее большинство, так как все зеленые растения на суше и в океане - автотрофы.

Клетки автотрофных организмов умеют делать две вещи. Они, во-первых, аккумулируют (опять же в форме фосфатных связей АТФ) энергию солнечного света, используя ее для своих целей. А во-вторых, добывают углерод для

построения глюкозы из углекислого газа Из глюкозы они создают более сложные молекулы, и поэтому все живое на Земле в конечном счете получает энергию от Солнца, причем растительные клетки берут эту энергию непосредственно, а животные - косвенным, но простым путем, поедая растения или других животных.

Фотосинтез, а именно так называется процесс, характерный только для растительного царства, происходит в клеточных органеллах - хлоропластах. Эффективность этого миниатюрного цеха нашей молекулярной фабрикиклетки необычайна. В лабораторных условиях удалось превратить 75 процентов энергии солнечного света в энергию фосфатных связей АТФ. Энергетические установки клетки по своей эффективности оставляют далеко позади не только классическую энергетику, но и самые последние достижения атомной.

Сбалансированность всех химических и энергетических процессов в клетке не может не вызвать восхищения. Электроника достигла впечатляющих успехов в создании микросхем и миниатюрных ЭВМ. Но все это не идет ни в какое сравнение с миниатюризацией механизмов превращения энергии в органическом мире.

А сейчас, прежде чем перейти к обсуждению наиболее интригующих событий и процессов, происходящих в живой клетке, полезно будет подвести некоторые итоги экспериментов в области предбиологической химии.

За последние годы появилось много работ, в которых продемонстрирована возможность образования из различных полимеров обособленных структурных единиц, обладающих некоторыми свойствами живого. Эти маленькие сферические частицы можно в известном смысле рассматривать как предшественников бактериальных клеток.

Здесь в первую очередь нужно указать на исследования коацерватных капель школы А. Опарина и работы американского биохимика С. Фокса по протеиноидным микросферам.

Отметим, что морфологические структуры, во многом похожие на протеиноидные микросферы Фокса, были получены фотохимическим путем индийским ученым К. Бахадуром и С. Ранганаяки. Они использовали в качестве исходного материала формальдегид и минеральный водный раствор, содержащий различные соли, который освещался ультрафиолетом. Раствор предварительно стерилизовали и пропускали через бактериальные фильтры. Образовавшиеся микрочастицы имели размеры 0,5 микрона и в течение 48 часов увеличивались до 2,5 микрона, демонстрируя таким образом способность к росту.

Бахадур и Ранганаяки назвали эти частицы "Дживану", что в переводе с санскрита означает "частица жизни". Несомненно, что самым интересным свойством этих структур является ферментативноподобная активность.

В частности, они обладали свойствами, присущими двум ферментам каталазе и пероксидазе.

Действие фермента каталазы проявляется в разложении перекиси водорода одного из вредных для организма соединений, которое образуется в процессах обмена веществ. Его нужно или удалять из клетки, или уничтожать химически. Природа выбрала второй путь, приспособив для этой цели один из внутриклеточных белков - каталазу, разлагающую перекись водорода. Фермент пероксидаза участвует в окислении аскорбиновой кислоты.

Наибольшего успеха в моделировании протрклеток добился американский биохимик Фокс. В его опытах для получения модели клетки использовались лишь полимеры аминокислот и вода. При взаимодействии полиаминокислот с водой и получались частицы сферической формы, похожие, но только внешне, по размеру, на бактериальные клетки. Фокс назвал их протеиноидными микросферами.

Они иногда образуют нечто вроде колоний стрептококков. Размер частиц колеблется от 0,7 до 7 микрон.

Максимальная величина достигается при взаимодействии полиаминокислот с однопроцентным раствором поваренной соли. Из одного грамма полимера получается до миллиарда микросфер, которые очень стабильны и не разрушаются при центрифугировании. Заметим, что коацерватные капли Опарина, например, полученные из желатина, гораздо менее устойчивы.

Поделиться:
Популярные книги

Я все еще граф. Книга IX

Дрейк Сириус
9. Дорогой барон!
Фантастика:
боевая фантастика
попаданцы
аниме
5.00
рейтинг книги
Я все еще граф. Книга IX

Кодекс Крови. Книга VIII

Борзых М.
8. РОС: Кодекс Крови
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Кодекс Крови. Книга VIII

Огненный князь

Машуков Тимур
1. Багряный восход
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Огненный князь

Ученичество. Книга 1

Понарошку Евгений
1. Государственный маг
Фантастика:
фэнтези
попаданцы
аниме
5.00
рейтинг книги
Ученичество. Книга 1

Деспот

Шагаева Наталья
Любовные романы:
современные любовные романы
эро литература
5.00
рейтинг книги
Деспот

Инцел на службе демоницы 1 и 2: Секса будет много

Блум М.
Инцел на службе демоницы
Фантастика:
фэнтези
5.25
рейтинг книги
Инцел на службе демоницы 1 и 2: Секса будет много

Тринадцатый

NikL
1. Видящий смерть
Фантастика:
фэнтези
попаданцы
аниме
6.80
рейтинг книги
Тринадцатый

Кодекс Охотника. Книга XIII

Винокуров Юрий
13. Кодекс Охотника
Фантастика:
боевая фантастика
попаданцы
аниме
7.50
рейтинг книги
Кодекс Охотника. Книга XIII

Чехов. Книга 3

Гоблин (MeXXanik)
3. Адвокат Чехов
Фантастика:
альтернативная история
5.00
рейтинг книги
Чехов. Книга 3

Изменить нельзя простить

Томченко Анна
Любовные романы:
современные любовные романы
5.00
рейтинг книги
Изменить нельзя простить

Сирота

Ланцов Михаил Алексеевич
1. Помещик
Фантастика:
альтернативная история
5.71
рейтинг книги
Сирота

Делегат

Астахов Евгений Евгеньевич
6. Сопряжение
Фантастика:
боевая фантастика
постапокалипсис
рпг
5.00
рейтинг книги
Делегат

Эйгор. В потёмках

Кронос Александр
1. Эйгор
Фантастика:
боевая фантастика
7.00
рейтинг книги
Эйгор. В потёмках

Наследник с Меткой Охотника

Тарс Элиан
1. Десять Принцев Российской Империи
Фантастика:
попаданцы
альтернативная история
аниме
5.00
рейтинг книги
Наследник с Меткой Охотника