Почему небо темное. Как устроена Вселенная
Шрифт:
Итогом подобного анализа является заключение, что наш мир имеет относительно небольшой запас прочности по отношению к изменению фундаментальных констант. Размышляя, подобно нашему древнему мыслителю, о «комфортности» Вселенной, можно сделать простой вывод — возможно, существует очень большая последовательность вселенных, в которых реализуются самые разнообразные наборы физических констант, и мы живем в той из них, в которой условия благоприятны для появления жизни земного типа. Это утверждение, по сути, почти тривиальное, и есть антропный принцип. На самом деле существуют десятки вариантов формулировки принципа, но в дальнейшем я буду иметь в виду лишь эту.
Антропный принцип обычно связывают с именем английского астрофизика Брэндона Картера. В 1974 году он предложил это название для утверждения, что то, что мы ожидаем получить
Что нам дает антропный принцип? Как ни странно, у столь общего утверждения, есть вполне конкретные достижения. Например, я уже упоминал, что Стивен Вайнберг задолго до результатов групп Перлмуттера и Шмидта использовал его для обоснования большого значения космологической постоянной. Замечательным применением антропного принципа (по крайней мере так об этом пишут во многих учебниках по космологии) считают и предсказание Фредом Хойл ом в 1953 году существования энергетического уровня ядра углерода с энергией возбуждения 7.65 МэВ. Без этого уровня углерод образовывался бы в звездах гораздо менее эффективно, и наша Вселенная была бы столь им бедна, что возникновение жизни на основе углерода стало бы невозможным. Примерно через неделю после этого предсказания уровень возбуждения 7.65 МэВ был действительно открыт в эксперименте! Еще одним предсказанием антропного принципа может считаться и существование Мультивселенной [32] — совокупности огромного количества вселенных, в каждой из которых реализуется свой набор значений физических констант.
32
Существует множество терминов для описания такого ансамбля вселенных — Мегавселенная, Метавселенная, Мультиверс (от английского Multiverse) и др.
Мультивселенная — концепция довольно старая. Например, что-то подобное можно найти у Эдгара По в «Эврике»: «существует некая беспредельная последовательность Вселенных, более или менее подобных той, о которой мы имеем осведомленность…», «не имея доли в нашем происхождении, они не имеют доли в наших законах. Ни они не притягивают нас, ни мы их… Между ними и нами… нет влияний взаимных…». Своего рода Мультивселенной является и упоминавшийся выше мир Больцмана, состоящий из огромного числа отдельных «вселенных-флуктуаций».
Мультивселенная — благодатное поле деятельности и для писателей-фантастов, герои произведений которых часто скачут из вселенной во вселенную на суперзвездолетах (иногда, правда, авторы путают галактики и вселенные). Кстати, одно из первых художественных описаний своеобразной Мультивселенной было дано знаменитым польским писателем Станиславом Лемом в «Новой космогонии» (1971 год). «Новая космогония» — это речь вымышленного лауреата Нобелевской премии Альфреда Тесты, в которой он описывает Вселенную, разбитую на отдельные «ячейки». Внутри ячеек существуют «различные разновидности физики» и «цивилизации могли возникнуть лишь в немногих очагах, значительно удаленных друг от друга». Собственно фантастика начинается дальше, когда Теста описывает эволюцию такой Вселенной как своего рода состязание или игру сверхцивилизаций, возникших в некоторых из ячеек, по переделке законов физики внутри своих ареалов обитания и во Вселенной в целом.
Все написанное выше можно отнести к общим рассуждениям. Есть ли какие-нибудь физические основания в поддержку существования Мультивселенной? Первые свидетельства такой возможности появились в теории инфляции. Эта теория возникла на рубеже 1970–1980-х годов усилиями ряда российских и зарубежных физиков-теоретиков (Алексей Старобинский, Андрей Линде, Алан Гут и др.). К этому времени в космологии накопился ряд проблем, неразрешимых в рамках стандартной фридмановской космологии. Например, каким образом во Вселенной установилось однородное и изотропное распределение материи на больших масштабах, почему разные, очень далеко разнесенные и причинно не связанные области Вселенной имеют одинаковые свойства, почему глобальная геометрия нашего мира близка к евклидовой? Теория инфляции успешно разрешила эти и другие проблемы фридмановской космологии, но, естественно, породила новые.
Основой теории инфляции является представление о существовании так называемого скалярного поля — особого вида материи, обладающего огромной плотностью и отрицательным давлением. Отрицательное давление означает, что эта среда порождает мощные силы гравитационного отталкивания. Скалярное поле испытывает квантовые флуктуации и в нем возникают области с большими значениями поля, которое начинает вести себя как космологическая постоянная и которое приводит к возникновению быстро расширяющихся областей.
В самом начале эволюции нашей Вселенной, еще до стадии Большого взрыва, был период такого сверхбыстрого ускоренного расширения (или раздувания) — инфляции. Инфляция длилась ~10– 34 с, и за это время размер флуктуации вырос в огромное, невообразимое число раз. В некоторых вариантах теории этот рост составляет 1010 10 раз! В итоге, в конце инфляционной стадии исходная флуктуация плотности, имевшая так называемый планковский масштаб (~10– 33 см), вырастает до колоссальных размеров, во много раз превышающих размер доступной наблюдениям современной Вселенной. Это объясняет однородность и изотропию, а также плоскую геометрию Вселенной — она представляет собой лишь крошечную часть чего-то гораздо большего, подобно тому, как небольшой участок поверхности огромного шара в первом приближении можно считать плоским, хотя сам шар, естественно, сильно искривлен.
В конце инфляции скалярное поле распадается, энергия поля переходит в энергию обычного вещества и возникает то, что уже знакомо по космологии Фридмана, — расширяющийся по инерции (начальные скорости расширения сформировались в конце стадии инфляции) сверхплотный сгусток элементарных частиц. Тем самым, можно сказать, что стадия инфляции подготавливает горячий Большой взрыв, создавая высокотемпературную плазму и заставляя новорожденную Вселенную расширяться (рис. 44). Или, другими словами, расширение Вселенной — следствие условий, сложившихся по окончании стадии инфляции, а сама инфляция — следствие определенных свойств скалярного поля. В настоящую эпоху Вселенная начинает потихоньку разгоняться под действием другого скалярного поля — того, что выше обсуждалось под названием «темная энергия» [33] .
33
Полувшутку-полувсерьез космологи иногда говорят, что история Вселенной — это просто история образования и распада скалярных полей.
Рис. 44. Основные этапы эволюции нашей Вселенной: Вселенная возникла в ходе квантовой флуктуации скалярного поля почти 14 млрд лет назад, затем последовала фаза инфляции, примерно через 400 000 лет после начала сформировалось наблюдаемое сейчас реликтовое излучение, первые звезды и галактики начали образовываться через несколько сотен миллионов лет и, наконец, несколько миллиардов лет назад торможение расширения Вселенной начало постепенно сменяться ускоренным расширением под влиянием темной энергии. (Рисунок с сайта map.gsfc.nasa.gov.)