Подводные лодки
Шрифт:
• В 1982 году на подлодке К-123 класса «Альфа» произошла утечка топлива первой-второй степени, но в реакторе «Альфы» в качестве охлаждающей жидкости использовался жидкий металл (смесь висмута и свинца). В результате неполадки 2 тонны жидкого металла вылились в реакторный отсек. В итоге реактор испытал недостаток охлаждающей жидкости, и топливо внутри него расплавилось. Реактор был настолько серьезно поврежден, что потребовалось целых 9 лет, чтобы восстановить его.
• В 1985 году подлодка К-314 класса «Виктор-1» остановилась на заправку в заливе Чашма, недалеко от Владивостока. Во время заправки крышка реактора была поднята неправильно, в результате чего были сдвинуты рычаги управления. В реакторе ускорился процесс распада частиц. В итоге 6 километров
• В 1989 году на подлодке К-192 класса «Эхо-II» произошла утечка охлаждающей жидкости, в результате которой были загрязнены воды Норвежского и Баренцева морей.
Другие 14 неполадок на русских атакующих подлодках имели менее суровые последствия и поэтому стали объектом не столь пристального внимания.
Рем — единица, призванная хоть как-то стандартизировать дозу излучения для гамма-лучей и нейтронов. Для половины людей смертельной является доза в 1000 бар. Если вы получили дозу в 1500 бар и более, то вряд ли вы выживете. Даже доза в 10 бар может принести большой вред, если излучение пришлось в район головного мозга. Безвредная доза равна 0,1 бар и менее.
Ядерный реактор на подлодке должен быть защищен 4-мя факторами:
• Отличный продуманный дизайн, который учитывал бы безопасную эксплуатацию и обслуживание.
• Высокопрофессиональные операторы и обслуживающий персонал.
• Периодические проверки процедур эксплуатации и обслуживания со стороны организаций, отвечающих за ядерную безопасность.
• Постоянное повышение квалификации персонала, а также обращение к материалам предыдущих трагедий, произошедших на флоте.
Эти четыре фактора были обозначены адмиралом Химаном Риковером, отцом американского атомного флота.
Реактор SL-1 был прототипом морского ядерного реактора. Пилотный экземпляр реакторов этого класса обслуживался в местечке Айдахо Фолз, когда поступил сигнал о радиоактивном заражении местности из отдаленного пожарного отделения. Спасатели пришли к выводу, что уровень радиации слишком высок, чтобы продолжать поиски. К тому времени они обнаружили тела трёх операторов. Дальнейшее расследование инцидента постановило, что причинами аварии могла стать, во-первых, несовершенная конструкция реактора — реактор мог достигнуть критической массы только благодаря одному рычагу. Второе — рычаг, регулировавший химический состав внутри реактора, был спроектирован не лучшим образом: рычаги управления были подвержены коррозии. И последней причиной аварии могла явиться ошибка оператора, если один из операторов дернул рычаг управления активной зоной реактора слишком резко. Физические расчеты показали, что скорость движения рычага гораздо важнее в деле повышения скорости реакции, чем расстояние его движения. Поэтому рычаг, резко сдвинутый на миллиметр, может повлечь за собой гораздо более серьезные последствия, чем тот же рычаг, сдвинутый медленно на 10 миллиметров.
В любом случае, в реакторе была запущена быстрая ядерная реакция, в результате чего мощность возросла от 1000 до 10 000 процентов за несколько миллисекунд. Произошел мощный взрыв пара, и реактор поднялся над землей на 3 метра. Два оператора погибли на месте, еще один был ранен в результате попадания в него рычага управления, вылетевшего из реактора. Оператор в центре управления погиб от большой дозы радиации, прежде чем он успел поднять телефонную трубку и позвать на помощь. Потребовались годы, чтобы ликвидировать последствия аварии. Дело было закрыто для доступа на несколько десятилетий после этого страшного события, чтобы не бросать тень на правительство и не приостанавливать эксперименты в области мирного использования атомной энергии.
Утечка пара относится к особой категории аварий на подлодке. Паровая магистраль тщательно спроектирована, местами толщина труб достигает 2,5 сантиметров, чтобы выдерживать внутреннее давление пара и не подвергаться коррозии со временем. Это потому, что пар из паровых котлов не полностью газообразный, он содержит в себе жидкость. Влага, содержащаяся в паре, способна разрушить и толстостенные трубы. Поток пара движется по трубопроводу с возрастающей скоростью по мере того, как его температура повышается с 15 °C (температуры окружающего воздуха) до рабочей температуры более 238 °C. Из-за этой огромной разницы температур металл, из которого сделаны трубы, расширяется, и труба может стать длиннее на несколько сантиметров. Чтобы этого не произошло, в трубопровод над турбинами вмонтированы кольцевые конвейеры. Но, несмотря на эти меры предосторожности, иногда труба может разрушиться.
Утечка пара из прохудившейся трубы — трагедия вдвойне. Во-первых, пар из основной паровой магистрали заполнит машинное отделение, и вахтенные поджарятся как лобстеры. Пар в этом случае представляет собой не безобидную струйку из носика вашего чайника, он обладает достаточной энергией, чтобы разрубить человека пополам или в считанные секунды поджарить его.
Это — трагедия вдвойне, потому, что эта неполадка перегружает реактор, забирая слишком много энергии из охлаждающей жидкости. В результате вода, поступающая в реактор, имеет слишком низкую температуру, медленных нейтронов становится больше, следовательно, возрастает число реакций распада. Реактор немедленно реагирует на сложившуюся ситуацию. А когда вахтенный, отвечающий за скорость подлодки, добавляет «газу», открывая основные паровые дроссели двигателя, в реактор начинает поступать холодная вода, и его мощность растет. В случае утечки пара происходит короткое замыкание в электропроводке турбин, и пар просто опустошает машинное отделение. Мощность реактора резко подскакивает. В результате образуется пара еще больше, чем в ходе утечки.
Мёртвые вахтенные в машинном отделении являются признаком того, что защитная система реактора приостановила его во время перегрузки, но неожиданная утечка пара привела к разжижению топлива, прежде чем работа реактора была приостановлена системой безопасности.
Потом возникает проблема отвода избыточного тепла, выделившегося в результате реакций, экстренной системой охлаждения. В противном случае топливо может расплавиться. Мёртвые вахтенные реакторного отсека и реактор без экстренного охлаждения ставят подлодку под угрозу гибели.
Быстрая ликвидация последствий утечки пара, предположив, что команда пережила взрыв пара, происходит так: оператор за панелью управления реактором должен перевести выключатели изоляционных клапанов MS-1 и MS-2 в положение «закрыто».
К сожалению, этим клапанам требуется от 20 до 30 секунд, чтобы остановить поступление пара. А их закрытие приводит к потере хода в случае двойной аварии, такой как затопление. Второе, что необходимо сделать, это открыть дроссели, чтобы попытаться выпустить пар в основной конденсатор.
Следующим шагом будет поиск места утечки пара и его изоляция, затем необходимо восстановить неповрежденную часть установки. Если утечка произошла на впуске левой турбины, основной паровой клапан MS-4 должен быть закрыт, чтобы изолировать левую турбину. Затем необходимо повысить давление путём открытия клапанов MS-1 и MS-2, чтобы проверить, работает ли изоляция. Затем клапаны MS-1 и MS-2 по правому борту машинного отделения должны быть снова открыты и запущены, чтобы вернуть ход подлодке.