Подводные лодки
Шрифт:
Использование пассивного широкополосного сонара похоже на то, как если бы вы слушали все радиостанции одновременно. Представьте себе, сколько шума вы бы услышали — музыка, новости, реклама и так далее. То же самое и с морем. Оно полно различных звуков: шум волн, киты перекликаются, шум торговых судов и даже далёкая вулканическая активность — все это вы услышите. Теперь представьте, что вы знаете частоту радиостанции, которую вы хотите послушать. Вы можете просто настроиться на неё, избавившись от постороннего шума. Это как раз то, для чего служит узкополосный сонар. Если вы точно знаете, звук какой частоты производится целью, вы можете пробраться через дебри океанических шумов и услышать нужный объект
Подобно широкополосному сонару, узкополосный сонар тоже «слушает», используя гидрофоны в обшивке корпуса подлодки. Узкополосный шлейф излучателей тянется за судном на кабеле длиной в милю. Гидрофоны выстроены в линию и похожи на очень толстый кабель. Они принимают звуки всех частот из окружающего океана. Но настоящим достижением является наличие компьютера, который носит название узкополосный процессор.
Этот сонар более эффективен благодаря наличию процессора обработки тональных сигналов. На любом судне полно вращающегося оборудования, в том числе винт, насосы морской воды, прочие насосы, турбины и дизельные силовые установки. Это оборудование вращается с фиксированной частотой, которую задает частота переменного тока (на западном оборудовании она составляет 60 Гц, на российском — 50 Гц). Это вращающееся оборудование посылает тональные сигналы в воду.
Единственный способ погасить такие тональные сигналы — закрепить оборудование на сложных звуковых кронштейнах, но это лишь делает сигнал тише. Оборудование все равно продолжает посылать их, а узкополосный процессор принимать сигналы.
Узкополосный процессор «снимает» сигналы с гидрофонов, расположенных позади подлодки, и выделяет лишь узкий диапазон частот, основываясь на частотах, излучаемых разными типами подлодок или других судов. Компьютер затем выводит график, на котором по горизонтали показана частота, а по вертикали — интенсивность сигнала. Информация выводится за 15 минут.
Если в течение 15 минут на экране остается горизонтальная линия, это означает отсутствие цели на данном участке на заданной частоте. Присутствие цели выводится в виде ломаной линии или последовательности на экране. Всплеск активности проявляется только в случае присутствия объекта, сделанного человеком. Вы уставились на экран с ломаными линиями, думая, что вы только что засекли свою первую подлодку противника. Эта мысль заставляет вас забыть о том, что экран не представляет из себя ничего интересного. Это не прошло бы в Голливуде, потому что тамошние режиссеры хотят, чтобы, глядя на похожие на радар экраны, человек знал, где находится цель.
Узкополосный процессор «изымает» из общего потока информации именно тот диапазон частот, который требуется. Диапазон — небольшой отрезок, включающий в себя определенные частоты, например, от 249 Гц до 251 Гц.
Тональный сигнал — просто звук определенной частоты, как звук музыкального инструмента.
Это показывает парадокс в работе узкополосного сонара: вам необходимо знать частоту,
Как, спросите вы, можно узнать нужную нам частоту? Её узнает американская подлодка, которая висит на хвосте новой подлодки противника, когда та отправляется в свое первое плавание. Американская подлодка проводит звуковой анализ, просто плавая кругами вокруг подлодки неприятеля. Позже записи анализируются ядром сонара, а затем анализируются частоты, излучаемые новой подлодкой противника.
Например, представьте себе, что 14 марта Национальное Агентство Безопасности получает информацию, что русская подлодка класса «Северодвинск» выйдет из дока Севмаш на севере России 1-го апреля или около того. Информация передается в Разведывательное агентство Министерства обороны, потом в Морскую разведку, затем Командующему морскими операциями, а затем командующему подлодками Атлантического флота. Оттуда сообщение передаётся на американскую подлодку «Оклахома Сити», которая осуществляет патрулирование в районе Кольского полуострова, колыбели российских баз подлодок и доков. Через несколько часов «Оклахома Сити» занимает позицию в районе проливов около бухты Севмаш, команда наготове.
1 апреля ничего не происходит, 2 апреля тоже тишина. Может быть, возникла проблема с детектором уровня парового генератора? 3 апреля — есть! Подлодка класса «Северодвинск» замечена через перископ, когда та покидала порт. «Оклахома сити» проследует её по пятам и осуществляет видеозапись внешних параметров подлодки во время того, как российская лодка находилась на поверхности. Также сонар записывает «голос» «Северодвинска», когда американская подлодка описывает круги вокруг нее. Как же получается так, что нас не замечает противник?
Два слова — акустическое превосходство. Американские подлодки тише русских, поэтому мы слышим их, а они нас — нет. «Оклахома Сити» преследует подлодку во время учений, а потом возвращается домой и привозит ценную информацию для дальнейшего анализа. Оказалось, что «Северодвинск» излучает двойной сигнал, на частоте 353,5 МГц и 354,6 МГц.
Эта информация передается на флот. В следующий раз, когда американская подлодка будет находиться в Баренцевом море и разведка укажет, что подлодка класса «Северодвинск» обнаружена в указанном районе, то команда сонара вводит «поисковый план» «Северодвинска» в компьютер, который ищет уникальный двойной сигнал на частоте 354 МГц. Как только процессор узкополосного сонара обнаруживает этот сигнал, они узнают, что подлодка класса «Северодвинск» где-то рядом.
Если вы не располагаете разведданными относительно данной подлодки, то у вас нет шансов обнаружить её с помощью узкополосного сонара. Чтобы найти иголку в стоге сена, вы должны точно знать, как она выглядит.
Это грубый частотный анализ с помощью широкополосного сонара с целью найти сигнал, испускаемый винтом подлодки. У судов, плавающих на поверхности, винты такие шумные, что в этом случае вы можете проделать эту операцию, используя наушники и секундомер. Когда вы не уверены в точности полученной информации, в дело вступает компьютер. В результате вы получаете количество оборотов винта в минуту и количество лопастей винта.