ПОИСКИ ИСТИНЫ
Шрифт:
Вавилов близко подошел к объяснению явления, предположив, что созданные у-квантами электроны, двигаясь в среде, испытывают периодические возмущения и поэтому дают наблюдаемое свечение.
Но это объяснение отвергалось теоретиками - ведь электрон большой энергии движется в жидкости с постоянной скоростью, а заряженная частица излучает, только ускоряясь или замедляясь. Электрон излучает электромагнитные волны в каждой точке своей траектории, но когда он движется по прямой с постоянной скоростью, всегда найдутся такие участки траектории, которые дают волны в противофазе, погашающие друг друга. Если электрон изменяет свое направление в
Так объяснялось, почему электрон не излучает, двигаясь без изменения скорости. Но в этом рассуждении было одно незаметное предположение: скорость электрона предполагалась меньшей, чем скорость света. В пустоте это условие всегда выполнено. Ведь согласно теории относительности, как бы ни была велика энергия частиц, скорость их меньше скорости света. Но в жидкости энергичный электрон движется со скоростью, близкой к скорости света, а электромагнитные волны распространяются со скоростью с', заметно меньшей: с' = с/п, где п - показатель преломления (для видимого света ns? 1,5).
Нетрудно сообразить, что в случае, когда v›c', есть такой угол излучения, при котором волны, идущие от всех участков траектории, складываются. Угол 0 просто связан со скоростью электрона и показателем преломления: cos в = c'/v. Именно под этим углом и происходит излучение Черенкова - Вавилова.
Подобное явление, но не для света, а для звука, было обнаружено в прошлом веке Эрнстом Махом. Пуля, движущаяся со сверхзвуковой скоростью, излучает звук под углом, косинус которого равняется отношению скорости звука к скорости пули (угол Маха). Такое же излучение звука происходит и при движении сверхзвуковых самолетов.
В 1937 году Игорь Евгеньевич Тамм и Илья Михайлович Франк поняли, в чем физическая причина явления, названного излучением Черенкова - Вавилова, и построили его количественную теорию. Определяя угол, под которым происходит излучение, можно найти скорость заряженной частицы. Поэтому излучение Черенкова - Вавилова оказало большое влияние на экспериментальную физику высоких энергий - появился способ определять с большой точностью энергию, например,
протонов, участвующих в столкновениях элементарных частиц.
В 1958 году И. Тамм, И. Франк и П. Черенков получили Нобелевскую премию «за открытие и интерпретацию эффекта Черенкова».
А вот как было открыто явление сверхтекучести академиком Петром Леонидовичем Капицей в Институте физических проблем АН СССР в 1937 году.
Изучались свойства жидкого гелия при низких температурах. Было известно, что при температурах, меньших 2,2 градуса Кельвина (-270,8 градуса Цельсия), жидкий гелий переходит в другую модификацию - гелий II, с совершенно другими свойствами. Голландский физик Биллем Кеезом обнаружил, что гелий II имеет теплопроводность в Ю6 большую, чем медь, что уже само по себе очень странно. Затем обнаружилось, что у гелия II аномально малая вязкость - в 103 раз меньшая, чем у воды. А микроскопический механизм теплопроводности и вязкости очень схож, и при большой теплопроводности всегда возникает и большая вязкость. Теплопроводность определяется скоростью передачи от слоя к слою тепловой энергии, а вязкость - скоростью передачи количества движения. Чем больше одно, тем больше и другое, а у гелия все получалось наоборот.
Размышления над этим парадоксом привели Капицу
Чтобы эта идея превратилась в достоверную истину, Капице понадобилось поставить десятки тончайших экспериментов. Первоклассный экспериментатор, он обсуждал свои опыты с первоклассным теоретиком Львом Давыдовичем Ландау. Теория и эксперимент стимулировали друг друга. Благодаря этому взаимодействию Ландау создал одну из лучших своих работ - теорию жидкого гелия II, с помощью которой удалось количественно описать все обнаруженные Капицей экспериментальные факты.
Ощущение красоты
Из этих примеров видно, какую роль в науке играет способность удивляться. Но, что еще более важно, они дают некоторое представление о красоте науки! Из незаметных на первый взгляд фактов после глубоких размышлений возникают неожиданные и важнейшие следствия. Слабое свечение неба заставляет пересмотреть наши взгляды на геометрию мира; закон сохранения энергии и равномерность хода времени оказываются теснейшим образом связанными; к электромагнитному полю применяются законы, найденные при изучении атомов нагретого газа, и это приводит к заключению, совершенно чуждому классической механике, - энергия электромагнитного колебания может изменяться только дискретными порциями…
Логическую взаимосвязанность результатов науки выразил выдающийся немецкий математик Давид Гильберт: «Разрешите мне принять, что дважды два - пять, и я докажу, что из печной трубы вылетает ведьма». Красота науки и в логической стройности, и в богатстве связей. Ощущение красоты помогает проверять правильность результатов и отыскивать новые законы. Это ощущение - отражение в нашем сознании гармонии, существующей в природе.
Понятие красоты настолько важно в науке, что мы еще много раз будем к нему возвращаться.
Умение чувствовать красоту вместе со способностью удивляться должно определять выбор научной профессии.
Нильс Бор сказал: «Специалист - это тот, кто знает некоторые привычные ошибки в данной области и умеет их избегать».
ПОДВОДНЫЕ КАМНИ
Господь Бог изощрен, но не злонамерен.
Надпись на камине у Эйнштейна
Поговорим о самых распространенных и существенных психологических ошибках, затрудняющих научную работу.
«Важнее как размышлять, чем о чем размышлять» (И.-В. Гёте)
На первой стадии работы, когда надо раздуть пламя, которое вот-вот погаснет, поиски доводов, подтверждающих принятую точку зрения, иногда необходимы. Но как только работа начала оформляться, успокаивающие соображения приносят только вред. И главной становится задача найти опровергающие факты. Доводы «за» находятся сами собой, без сознательных усилий.
Стремление обязательно сделать открытие очень часто приводит к выискиванию успокоительных аргументов и даже к невольной подтасовке фактов.