ПОИСКИ ИСТИНЫ
Шрифт:
Тот, кто хотя бы однажды делал работу, лежащую на границе возможного или, казалось бы, за его пределами, знает, что есть только один путь - упорными, неотступными усилиями, решением вспомогательных задач, подходами с разных сторон, отметая все препятствия, отбрасывая посторонние мысли, довести себя до состояния экстаза (или вдохновения?), когда сознание и подсознание смешиваются, когда сознательное мышление продолжается во сне, а подсознательное - наяву… Этот экстаз довольно опасен, он близок к психическому расстройству, к тому состоянию, которое описано Чеховым в «Черном монахе». Эйнштейн писал, что в период создания теории относительности он доходил до галлюцинаций. Но это состояние приходит редко. Для него необходимо совпадение нескольких маловероятных условий: наличие трудной задачи, взволновавшей до глубины души; ощущение, что именно ты можешь и должен ее решить; владение техникой, достаточное для решения;
Стиль научной работы
Существует глубокое родство в характере творческого процесса в любой области. Описания художественного творчества, сделанные художниками и поэтами, очень близки описанию процесса математического творчества у Пуанкаре. Много сходства есть и в методах осуществления поставленной задачи. И. Я. Померанчук, впервые попав в мастерскую скульптора, сказал: «В искусстве, так же как и в науке, нужно знать, чем можно пренебречь».
Но есть принципиальное различие между истиной, заложенной в произведении искусства, и истиной, к которой стремится наука. Задача искусства - исследование мира глазами художника, познание связи природы и познающего человека. Эта задача по необходимости субъективна, и произведение искусства должно содержать в себе черты индивидуальности своего создателя.
Задача науки - нахождение объективных законов природы, и поэтому окончательный результат не зависит от личных качеств ученого. Но объективность науки исчезает, когда мы переходим от окончательной цели к способам ее осуществления, способам подхода к познанию истины, к методологии. У каждого ученого свой собственный стиль исследования, свой подход к решению стоящих перед ним задач. Мало того, стиль и способ подхода определяют и характер изучаемых задач. Тогда индивидуальность ученого проявляется как индивидуальность архитектора, осуществляющего стремление к гармонии в рамках утилитарной задачи.
В теоретической физике индивидуальность стилей проявляется так: есть физики, для которых несущественно, каким образом получен результат, лишь бы цель была достигнута; но есть и такие (на мой взгляд, заслуживающие большего уважения), которые любят методику теоретической работы и добиваются, чтобы результат был получен не искусственным методом, а наиболее соответствующим задаче. Это ведет к более глубокому пониманию, а следовательно, к большей достоверности результатов. Существуют абстрактные физики-теоретики, решающие задачи, не связанные непосредственно с опытом; и физики-теоретики, работающие в тесном контакте с экспериментаторами. Для последних заметную часть работы составляет теоретический анализ эксперимента, уже сделанного или предполагаемого. Наряду с теоретиками, предпочитающими строгий математический подход (к сожалению, редко возможный в теоретической физике), существуют ученые, для которых важнее подход качественный, когда результаты получаются сначала на упрощенных моделях и по возможности наглядно.
Среди физиков нашей страны самым ярким примером теоретика, стремившегося получить результат методом, наиболее соответствующим задаче, был Лев Да-выдович Ландау. Недавно умерший академик Владимир Александрович Фок добивался максимально строгой постановки вопроса. Он получил важнейшие результаты в квантовой теории, решая задачи, допускающие строгую математическую формулировку. Игорь Евгеньевич Тамм сочетал различные стили: иногда это были работы по изучению приближенных моделей явления, а иногда, как и у Ландау, исследования сложной физической задачи приближенными методами. Николай Николаевич Боголюбов представляет собой редкий пример сочетания двух профессий - математики и теоретической физики. Для него характерно строгое исследование сознательно упрощенных моделей явления. Исаак Яковлевич Померанчук ставил целью находить такие вопросы и строить теорию таких явлений, которые вскрывают самые глубинные свойства физического мира. Поэтому его работы всегда оказывались на переднем крае науки. Большое влияние на развитие многих областей теоретической физики оказал замечательный ученый Яков Ильич Френкель. Ему принадлежит громадное число физических идей, которые он выдвигал, не стремясь довести работу до конца, ограничиваясь качественным рассмотрением задач.
Неудивительно, что ученый, который предпочитает, например, строгий, формально-математический метод исследования, привлекает своими работами молодых людей математического
«Достоверные» и «недостоверные» работы
Обязателен ли стиль или школа для научного работника, изменяется ли он со временем? Характер избираемых задач и способ подхода к ним должен изменяться с ростом квалификации ученого, с совершенствованием техники и увеличением опыта. Начиная свой путь в науке, лучше не браться за неопределенные, проблематичные работы. Нужно приобрести опыт и овладеть техникой, решая не очень сложные задачи. Существует важнейшее явление: работа, которая «получилась», которую удалось довести до конца, приносит гораздо больше пользы воспитанию качеств научного работника,чем десятки работ, брошенных на середине из-за чрезмерных трудностей. Начинать нужно с «достоверных» задач, которые не требуют введения недоказанных или недоказуемых предположений, а являются следствием полученных раньше результатов. Начинающий научный работник не имеет права на ошибочные работы.
Однако с ростом опыта и числа доведенных до конца «достоверных» работ отношение к «недостоверным» должно измениться.
Надо ли серьезному ученому гордиться тем, что он никогда не делал ошибочных работ? Ошибочных не в смысле тривиальных ошибок, неправильных вычислений или невымытой химической посуды - таких ошибок надо стыдиться, как неблаговидных поступков. Я имею в виду правдоподобные, но необоснованные предположения, неправильность которых выясняется только при дальнейшем развитии науки. С одной стороны, отсутствие ошибочных работ говорит о высокой научной добросовестности и интуиции ученого, а с другой - оно может означать и недостаток размаха и мужества. Не может быть хорошим горнолыжником или мотоциклистом человек, который никогда не падал, значит, он не доходил до предела своих возможностей. Между тем именно «недостоверные» работы, когда они подтверждаются дальнейшим развитием науки, становятся самыми интересными, так как позволяют проверить предположения, положенные в их основу.
И наоборот, абсолютно достоверные работы, которые неизбежно следуют из полученных ранее результатов, часто не дают существенного толчка науке. Сюда же относится вопрос о сравнении теории с экспериментом, который вызывает много споров между физиками-теоретиками и физиками-экспериментаторами. Совпадение теории с опытом не единственный и даже не главный аргумент в оценке теории. Хорошая теоретическая работа представляет собой убедительный вывод из предыдущих достижений науки, которые получены в результате громадного числа многократно проверенных экспериментов. Несовпадение хорошей теоретической работы с опытом означает, что следует пересмотреть предположения, положенные в ее основу, и что произошло какое-то малое или большое открытие. Тогда как совпадение с опытом неправильной теории не делает ее более убедительной. О качестве теории нужно судить по тому, насколько убедительно и непротиворечиво она построена.
Убедительно построенные «недостоверные» теории влияют на развитие науки, даже когда предположения, положенные в их основу, оказываются неверными. Мне хочется рассказать о замечательной работе покойного академика И. Е. Тамма, которая сильно повлияла на физику элементарных частиц. В то время - в 1934 году - только что появилась теория \beta-распада, предложенная Энрико Ферми. В ней был указан механизм превращения нейтрона в протон с испусканием электрона и нейтрино. Основываясь на этом механизме, Тамм построил теорию ядерных сил, то есть сил, удерживающих нуклоны - нейтроны и протоны - в ядре. Основная его идея состояла в том, что один из нуклонов испускает электрон и нейтрино, а другой нуклон поглощает эти частицы. Дальнейшее развитие науки показало, что обмен электронами и нейтрино почти не влияет на ядерные силы. Ядерные силы обусловлены тем, что нуклоны, как и в теории Тамма, испускают и поглощают частицы, но другие, открытые позже. Одна из таких частиц - пи-мезон. Таким образом, исходное предположение теории не подтвердилось. Тем не менее идея о том, что ядерные силы связаны с испусканием и поглощением частиц нуклонами, оказалась не только правильной, но и чрезвычайно плодотворной. Она получила развитие в работе Хидэки Юкавы в 1935 году, где он объяснял ядерные силы обменом частицей, сильно взаимодействующей с нуклонами. Тем самым он предсказал существование пионов за 14 лет до их открытия.