ПОИСКИ ИСТИНЫ
Шрифт:
Итак, мы пока не понимаем логической структуры этого доказательства и, значит, не уверены в его убедительности.
Поскольку предположение, что тела большего веса падают с большей скоростью, логически допустимо, мы вправе использовать рассуждение Галилея, чтобы установить, каким фактам оно противоречит. Тогда добавление малого тела к большому должно не замедлять его, а ускорять, ведь получившееся после скрепления тело должно падать с еще большей скоростью. С другой стороны, если два тела скреплены тонкой длинной ниткой, то они будут стремиться двигаться так же, как и без скрепления, то есть тело большего веса будет стремиться двигаться быстрее, а малое тело будет его тормозить. Тогда как при основательном скреплении малое тело должно
В заключение попробуем применить ко всему сказанному идею предельного упрощения.
Движущей силой в науке должно быть не стремление совершить переворот, добиться успеха, а любознательность, способность удивляться и радоваться каждой малой удаче и, главное, ощущение красоты науки. Необходимо воспитать в себе безупречную добросовестность и способность доводить любой самый сложный вопрос до предельной простоты и ясности. Найти выход из многих психологических противоречий. Руководствоваться интуицией, но не доверять ей. Знать все трудности, но уметь на время от них отвлекаться. Верить в результат и в то же время упорно искать его опровержение. Найти свой стиль работы, но менять его по мере накопления опыта и с каждым большим открытием. Короче, нужно все понять «до оснований, до корней, до сердцевины», как сказано у Пастернака.
Эти стихи начинаются словами: «Во всем мне хочется дойти до самой сути. В работе, в поисках пути, в сердечной смуте…»
Пусть эти строки послужат напутствием тем, кто решился посвятить себя науке.
О КРАСОТЕ НАУКИ
Неудивительно, что истинное прекрасно, ведь истина отражает красоту и гармонию Вселенной. Но более того - красивое часто оказывается истинным. Когда у математика или физика возникает изящное построение, оно почти всегда либо решает поставленную задачу, либо будет использовано для каких-то других, будущих задач. Мы увидим это на примере одного из главных направлений современной физики - поисков симметрии пространства и внутренней симметрии элементарных частиц. Но прежде нужно понять, что такое красота в науке и как поиски красоты приближают нас к познанию природы.
ПОИСКИ КРАСОТЫ
Чему бы жизнь нас ни учила, Но сердце верит в чудеса: Есть нескудеющая сила, Есть и нетленная краса.
Ф. Тютчев
Можно ли ограничиться чисто внешней красотой или за ней следует искать более глубокую, несущую некий высший смысл? В чем красота логических построений? Главные направления физики XX века - поиски симметрии и единства картины мира.
Алгебра и гармония
Что такое красота? Часто мы называем красивым то, что соответствует нормам и идеалам нашего времени. Идеалы и моды у каждой эпохи свои. Но есть красота нетленная, непреходящая, к которой человечество обязательно возвращается. Нас никогда не перестанут радо-
вать
Можно ли ограничиться внешним восприятием красоты? Можно ли оценить красоту, измеряя линейкой соотношения размеров? За чисто внешней красотой лица мы ищем красоту духовную, благородство, напряжение мысли.
И в конкретном и в абстрактном искусстве значительность произведения определяется тем, насколько оно выходит за рамки внешнего воздействия, насколько глубоко взаимодействуют и соотносятся части целого.
Мой покойный друг скульптор Алексей Зеленский говорил: «Я сажусь в метро и смотрю на ноги сидящих. Потом поднимаю глаза и вижу: а голова-то ведь от этих ног! Вот когда поймешь, почему при этой голове должны быть именно такие ноги, можно делать портрет». Валерий Брюсов писал: «Есть тонкие, властительные связи меж контуром и запахом цветка». Это взаимодействие частей иногда радует взор, как в «Поцелуе» Родена, картинах Рафаэля или Ватто, но может быть напряженным и трагическим, как в «Рабах» Микеланджело, у Эль Греко или Гойи.
Вот строки Осипа Мандельштама:
…Но чем внимательней, твердыня Notre-Dame, Я изучал твои чудовищные ребра, Тем чаще думал я: «Из тяжести недоброй И я когда-нибудь прекрасное создам…»
По словарю Ларусса, красивое - это то, что «радует глаз или разум».
Мы говорим о красоте музыки Моцарта, пушкинских стихов, но что можно сказать о красоте науки, мысленных построений, которых не нарисовать на бумаге, не высечь из камня, не переложить на музыку?
Крдсота науки, как и искусства, определяется ощущением соразмерности и взаимосвязанности частей, образующих целое, и отражает гармонию окружающего мира.
Вот что говорит Анри Пуанкаре в книге «Наука и метод»: «Если бы природа не была прекрасна, она не стоила бы того, чтобы ее знать; жизнь не стоила бы Toго, чтобы ее переживать. Я здесь говорю, конечно, не о той красоте, которая бросается в глаза (…), я имею в виду ту более глубокую красоту, которая открывается в гармонии частей, которая постигается только разумом. Это она создает почву, создает скелет для игры видимых красок, ласкающих наши чувства, и без этой поддержки красота мимолетных впечатлений была бы несовершенна, как все неотчетливое и преходящее. Напротив, красота интеллектуальная дает удовлетворение сама по себе».
Красота логических построений
Красота, о которой говорит Пуанкаре, - это не только отражение гармонии материального мира, это и красота логических построений. Логическое - один из объектов познания, его объективность доказывается общеобязательностью логических заключений. Логическая красота так же объективна, как и красота физических законов. Мы часто ощущаем изящество теории и в том случае, когда предсказания ее не подтвердились экспериментом. Под «изяществом» понимается остроумие аргументации, установление неожиданных связей, богатство и значительность заключений при минимальном числе правдоподобных предположений… Словом, то, что отражает красоту законов разума.
Красота логических построений в самом чистом виде проявляется в математике. Так, математика изучает все возможные геометрии пространства с произвольным или даже бесконечным числом измерений. Математическая ценность и красота этих результатов не зависят от того, какая именно из геометрий осуществляется в нашем трехмерном мире.
Один из удивительных примеров математической красоты - это «алгебра высказываний», или «алгебра логики», позволившая анализировать законы и возможности логических заключений.