ПОИСКИ ИСТИНЫ
Шрифт:
Так же как бессмысленно сравнивать величины разной размерности, скажем, время и длину, массу и скорость, - невозможно и равенство, в котором слева - скаляр, а справа - вектор.
Суть симметрии именно в этом делении величин на скаляры, векторы, тензоры, спиноры… Ясно, насколько легче отыскать уравнение, если требовать, чтобы все слагаемые одинаково изменялись.
Мы увидим в следующей главе, как размерные оценки позволяют находить неожиданные физические соотношения. Классификация величин по их изменению при поворотах или при какой-либо другой операции - это следующий шаг в сторону глубины понимания природы; жаль, что школьный курс ограничивается лишь первым шагом -
Симметриям, которые мы до сих пор рассматривали, соответствовали операции, не зависящие от пространственной точки. Во всем пространстве происходит одинаковый сдвиг или поворот. Такие симметрии называются «глобальными». Можно было бы попытаться найти такие уравнения, так записать законы природы, чтобы они не изменялись не только при глобальных сдвигах и поворотах, но при сдвигах и поворотах различных в разных точках. Такая симметрия называется «локальной».
Именно из этого исходил Эйнштейн в поисках своих знаменитых уравнений тяготения, связавших геометрию пространства с плотностью материи. Уравнения тяготения возникают как следствие локальной симметрии пространства-времени. Эти уравнения объединили механику и тяготение; из них при малых скоростях вытекают уравнения ньютоновой механики.
Мы пока рассматривали пространственно-временные, или, короче, пространственные симметрии.
В физике последнего времени играют важнейшую роль и так называемые «внутренние симметрии». Одна из них - «калибровочная инвариантность». Не вдаваясь в сложные объяснения, скажу, что она обеспечивает, в частности, справедливость такого важного закона, как закон Кулона. Даже малое нарушение калибровочной инвариантности в электродинамике несовместимо с тем, что нам известно о распространении длинных радиоволн.
Другой пример внутренней симметрии - «изотопическая инвариантность сильных взаимодействий». Она объясняет сходство целых семейств элементарных частиц, например нейтрона и протона. Обобщение этой симметрии привело физику к открытию кварков - частиц, из которых построены все сильновзаимодействующие частицы - адроны, - такие, как нейтрон, протон, пи-мезон, прежде считавшиеся элементарными.
Дальше я расскажу подробнее об этих и других внутренних симметриях. Мы увидим, что законы сохранения - закон сохранения энергии, импульса или заряда - получаются как строгое следствие различных симметрии.
Природа не терпит точных симметрии
Большинство симметрии возникает при некоторой идеализации задачи. Учет влияния более сложных взаимодействий приводит к нарушению симметрии. Например, независимость энергии атома водорода от орбитального момента становится неточной - симметрия слегка нарушается, если учитывать релятивистские поправки к движению электрона. Даже законы сохранения, связанные с пространственной симметрией, крайне мало, но все же нарушаются неоднородностью Вселенной во времени и пространстве.
Существует гораздо более важное нарушение симметрии - «спонтанное». Примеры такого нарушения встречаются на каждом шагу в обыденной жизни. Капля воды, лежащая на столе, - пример нарушения симметрии, ведь взаимодействие молекул между собой и с молекулами стола допускает более симметричное решение - вода размазана тонким слоем по столу. Но это решение для малых капель оказывается энергетически невыгодным. Таким образом, система, обладающая высокой симметрией, может иметь менее симметричные решения. Твердые тела представляют собой
Существуют не только сферические, но и «деформированные» ядра, имеющие форму эллипсоида, - это нарушение и трансляционной и вращательной симметрии.
Спонтанное нарушение симметрии весьма распространенное явление в макроскопической физике. Однако в физику высоких энергий оно пришло с большим запозданием. Не все физики, занимавшиеся теорией элементарных частиц, сразу приняли возможность асимметричных решений в симметричных системах. Что поделаешь - узкая специализация имеет свои теневые стороны!
Как сказывается это явление в физике элементарных частиц? Плодотворная тенденция теории элементарных частиц состоит в предположении, что на сверхмалых расстояниях царствует максимальная симметрия, но при переходе к большим расстояниям возникает спонтанное нарушение, которое может сильно замаскировать симметрию. Так, в теории электрослабого взаимодействия, объединяющего электродинамику и слабые взаимодействия, при сверхмалых расстояниях (порядка 10-16 сантиметра) существуют четыре равноценных безмассовых поля, которые при больших масштабах в силу спонтанного нарушения превращаются в три массивных W-бозона с массами порядка 100 ГэВ и один безмассовый фотон. Возникновение в системе безмассовых глюонов и кварков, массивных адронов, есть другой пример спонтанного нарушения симметрии. Эти примеры показывают, какие принципиальные свойства элементарных частиц определяются явлением спонтанного нарушения.
Спонтанное нарушение симметрии связано еще с одним очень важным явлением. Когда нарушается симметрия, то все-таки остаются следы от бывшей ранее более высокой симметрии. Это так называемые «возбуждения Гольдстоуна», по имени обнаружившего их английского физика. Когда атомы собираются в кусок твердого тела, возникает нарушение трансляционной симметрии. Но при этом остается свобода перемещения в пространстве центра тяжести всего куска в целом. Когда происходит упругое колебание с большой длиной волны, каждый маленький участок перемещается словно целое. Поэтому мы вправе ожидать, что при увеличении длины волны частота упругого колебания должна стремиться к нулю. Это действительно выполняется, частота длинноволнового колебания - частота звука, обратно" пропорциональная длине волны. Звук в твердом и жидком теле и есть простейший пример «гольдстоу-новского колебания». Вращательные состояния больших деформированных ядер тоже «гольдстоуновские колебания», на этот раз возникающие в результате нарушения вращательной симметрии, именно поэтому вращательные возбуждения ядер имеют малую частоту.
Спонтанное нарушение симметрии - хороший пример того, как разные области физики, даже далекие друг от Друга, оказывают взаимное влияние. В данном случае это влияние физики твердого тела на теорию элементарных частиц. Но можно привести не меньше и обратных примеров - современные теоретические методы исследования фазовых переходов, а также других явлений макроскопической физики пришли в нее из физики высоких энергий.
Объять необъятное
Другое направление, по которому развивалась физика, - поиски единых причин для явлений разного круга, попытки объединения различных областей физической науки.