ПОИСКИ ИСТИНЫ
Шрифт:
Самый решительный удар по закону зеркальной симметрии был нанесен в 1956 году блестящим опытом по изучению р-распада кобальта, поставленным группой американских физиков (Цзинь-сян By и др.). Кобальт
при низкой температуре был помещен в сильное магнитное поле. При этом ядра поляризуются - их спины (о спине мы еще поговорим) ориентируются вдоль магнитного поля. При \beta-распаде из ядер кобальта вылетают электроны и антинейтрино. Обнаружилось, что электроны вылетают преимущественно под тупыми углами к направлению магнитного поля. Между тем, по закону зеркальной симметрии острые и тупые углы должны были бы встречаться одинаково часто.
Действительно,
Наступил период смятения. Физики стали сомневаться и в других свойствах симметрии нашего пространства. Как казалось в то время, выход из тупика нашли в 1957 году советский физик Л. Д. Ландау и американские Цзун-дао Ли и Чжень-нин Янг. Они предположили, что частицы (электроны, нейтрино, нуклоны), участвующие в р-распаде, зеркально асимметричны; симметрия восстанавливается, только если перейти от частиц к античастицам. Теперь при отражении в зеркале вся картина изменится - не только тупые углы перейдут в острые, но и частицы не перейдут семи в себя. Таким образом, зеркальная симметрия пространства не нарушается, а асимметрия слабого взаимодействия определяется асимметрией участвующих частиц. Существование в нашем мире асимметричных частиц не противоречит симметрии пространства, так же как ей не противоречит асимметрия живых объектов.
Зарядово-зеркальная симметрия. Антимиры
До этих опытов физики считали, что законы природы не изменяются, если все заряды заменить на обратные. Это свойство законов природы называется зарядовой симметрией.
Все уравнения физики наряду с частицами допускают существование античастиц. И такие античастицы (позитрон, антипротон, антинейтрон и т. д.) действительно были обнаружены. Подобно ядру любого химического элемента, состоящему из протонов и нейтронов, можно составить ядро соответствующего антиэлемента из антипротонов и антинейтронов. Если к такому антиядру, заряженному отрицательно, добавить позитроны, то получится антиатом, а из антиатомов можно образовать антивещество. Силы между античастицами равны силам между частицами, поэтому антивещество будет обладать теми же свойствами, что и вещество.
Теперь, для того чтобы учесть свойства слабого взаимодействия, закон зарядовой симметрии пришлось уточнить - природа обладает не зарядовой, а зарядово-зер-калыюй симметрией. Никакие законы природы не изменятся, если все заряды в мире изменить на обратные и одновременно произвести зеркальное отражение.
Антимир отличается от нашего мира не только знаком зарядов. В таком мире изменяется понятие правого и левого: антимир - зеркальное отражение нашего мира. Люди этого мира, если бы они проходили ту же историческую эволюцию, что и мы, имели бы сердце с правой стороны. Более сильная рука у них была бы левая. Замечательный американский физик Ричард Фейнман в своих лекциях говорит: «Если в космическом пространстве вы встретите корабль, идущий из далекого мира, н космонавт протянет вам левую руку, - берегитесь, возможно, он состоит из антивещества!»
Существуют ли в нашей Вселенной
области антивещества? Этот вопрос пока остается без окончательного ответа, хотя большинство астрофизиков полагает, что антимиров нет. Если бы они существовали, то на границах вещества и антивещества происходила бы аннигиляция электронов и позитронов, то есть превращение электрона и позитрона в два кванта; энергия каждого из квантов должна равняться энергии покоя электрона (0,5 МэВ). Во Вселенной должны были бы присутствовать в большом количестве кванты с энергией 0,5 МэВ. Между тем таких квантов нет.
Итак, Ландау и Ли-Янг предположили, что законы природы обладают зарядово-зеркальной симметрией.
Но и эта симметрия оказалась неточной. В опытах по распаду того же злополучного К-мезона, который принес первые неприятности с нарушением зеркальной симметрии, было обнаружено небольшое, но колоссально важное, с принципиальной точки зрения, нарушение закона зарядово-зеркальной симметрии.
Означает ли это, что наше пространство не симметрично, или же опять нарушение есть свойство частиц, а не пространства?
Любое важное открытие вначале нарушает красоту и порядок, но через некоторое время приводит к еще более стройной картине.
Поэтому лучше подождать с ответом на вопрос, поставленный в заглавии раздела.
ВНУТРЕННЯЯ СИММЕТРИЯ
…от явлений к законам природы, от законов природы к симметрии…
Е. В и г н е р
Нам предстоит обсудить еще один тип симметрии, так же оплодотворяющий современную физику, как и пространственные.
Существуют «внутренние симметрии», которые означают неизменность явлений не при отражениях, сдвигах или поворотах в пространстве, а при изменении некоторых внутренних свойств полей или частиц. Так, сильные взаимодействия слабо зависят от заряда участвующих частиц, это свойство позволяет установить «изотопическую симметрию сильных взаимодействий» - пример внутренней симметрии.
Каждая внутренняя симметрия, так же как и пространственная, приводит к своему закону сохранения, и наоборот - когда какая-либо величина сохраняется во многих явлениях, это, как правило, означает, что существует симметрия, обеспечивающая сохранение. Например, электрический заряд сохраняется во всех известных явлениях природы. Симметрия, которая соответствует этому закону сохранения, называется калибровочной инвариантностью. Она пронизывает не только электродинамику, но и всю современную теоретическую физику. Поэтому о ней следует поговорить подробнее.
Электромагнитные поля, взаимодействующие с заряженными частицами, удобно описывать с помощью так называемых «векторных потенциалов». Между тем силы, действующие на заряженные тела, определяются не непосредственно векторным потенциалом, а напряжен-ностями электрического и магнитного полей. Эти поля выражаются через разности значений векторного потенциала в соседних точках (через «градиенты» векторного потенциала). Можно изменять векторный потенциал, не изменяя при этом напряженности полей. Калнбро