Популярная библиотека химических элементов. Книга первая. Водород — палладий
Шрифт:
СТРОНЦИЙ И ЖИВЫЕ ОРГАНИЗМЫ. Стронций способен накапливаться в живом организме. По данным академика А. П. Виноградова, среднее содержание стронция в живом веществе равно 0,002%. Некоторые морские организмы аккумулируют стронций из морской воды (там его 0,013%). Известны радиолярии, скелет которых целиком состоит из SrSO4. Минерал целестин, имеющий такой же состав, встречается в осадочных породах и образуется как продукт химического осаждения из вод замкнутых бассейнов. В «Воспоминаниях о камне» академик А. Е. Ферсман рассказал историю о том, как за миллионы лет из бесцветных иголочек морских звезд акантарий выросли сказочно красивые голубые кристаллы целестина (лат. cellestis —
КАК ПОЛУЧАЮТ МЕТАЛЛИЧЕСКИЙ СТРОНЦИЙ. Металлический стронций сейчас получают алюмотермическим способом. Окись SrO смешивают с порошком или стружкой алюминия и при температуре 1100–1150°C в электровакуумной печи (давление 0,01 мм ртутного столба) начинают реакцию
Электролиз соединений стронция (метод, которым пользовался еще Дэви) менее эффективен.
ПРИМЕНЕНИЕ МЕТАЛЛИЧЕСКОГО СТРОНЦИЯ. Стронций — активный металл. Это препятствует его широкому применению в технике. Но, с другой стороны, высокая химическая активность стронция позволяет использовать его в определенных областях народного хозяйства. В частности, его применяют при выплавке меди и бронз — стронций связывает серу, фосфор, углерод и повышает текучесть шлака. Таким образом, стронций способствует очистке металла от многочисленных примесей. Кроме того, добавка стронция повышает твердость меди, почти не снижая ее электропроводности. В электровакуумные трубки стронций вводят, чтобы поглотить остатки кислорода и азота, сделать вакуум более глубоким. Многократно очищенный стронций используют в качестве восстановителя при получении урана.
СТРОНЦИЕВЫЙ БУМ. В самом конце 60-х годов в большинстве промышленно развитых стран стало наблюдаться явление, получившее название стронциевого бума. Действительно, в это время резко возросли добыча стронциевых минералов и практическое использование некоторых его соединений. Этот подъем был вызван возросшей потребностью в окиси стронция и его карбонате в производстве цветных телевизоров и появлением новых керамических материалов для производства ферритов. В составе этих керамик карбонат стронция заменил карбонат бария, благодаря чему значительно улучшились магнитные свойства этих композиций.
Расход окиси стронция в телевизионной технике довольно велик: до килограмма SrO на каждый цветной телевизор. Окись стронция вводится в состав стекол, эффективно задерживающих рентгеновское излучение кинескопов. Рост спроса на магнитные материалы с карбонатом стронция объясняется не только потребностями вычислительной техники в высококачественных ферритах. Подобные же магнитные материалы нужны для производства портативных электромоторов. Поэтому полагают, что массовое производство электромобилей может вызвать в недалеком будущем еще один стронциевый бум.
СТРОНЦИЙ ИЗ АПАТИТОВ. В последние годы в связи со значительным ростом спроса на стронций встал вопрос об извлечении его из апатитов. Его в них немало — до 2,5%, но при традиционной технологии обработки апатитового концентрата весь этот стронций безвозвратно теряется. При обработке апатитового концентрата серной кислотой сульфат стронция осаждается вместе с фосфогипсом. Но если на тот же концентрат подействовать азотной кислотой, можно выделить нитрат стронция, а затем перевести его в нужный телевизионной технике и другим отраслям производства карбонат. Новая технология позволяет выделить из тонны апатита около 20 кг SrCO3.
Иттрий
Остров Руслаген — один из многочисленных островков на Балтике близ столицы Швеции Стокгольма — знаменит
В этом утверждении безусловно есть преувеличение. Но так же безусловно, что минерал, в котором нашли семь новых химических элементов, — вещь незаурядная. Тем не менее ни в одном минералогическом справочнике названия «иттербит» сейчас не найти.
Первым серьезным исследователем этого минерала и первооткрывателем окиси иттрия был финский химик Юхан Гадолин (1760–1852). Это он, проанализировав иттербит, обнаружил в нем окислы железа, кальция, магния и кремния, а также 38% окиси неизвестного еще элемента. Через три года шведский ученый Экеберг подтвердил результат финского коллеги и ввел в химический обиход название «иттриевая земля». Позже, еще при жизни Гадолина, было решено называть открытый им элемент иттрием, а минерал из Иттербю переименовали в гадолинит.
Впрочем, впоследствии оказалось, что упоминавшиеся 38% приходятся на долю не одного, а нескольких новых элементов. «Расщепление» окиси иттрия заняло больше 100 лет.
В 1843 г. Карл Мозандер поделил ее на три компонента, три окисла: бесцветный, коричневый и розовый. Три окисла — три элемента, название каждого происходит от фрагментов также «расщепленного» слова Иттербю. От «итт» — иттрий (бесцветная окись), от «тер» — тербий (коричневая) и от «эрб» — эрбий (розовая окись).
Юхан Гадолин (1760–1852) — финский химик, профессор университета в Або, член-корреспондент Петербургской академии наук. В 1794 г. в минерале иттербите, переименованном позже в гадолинит, он обнаружил окись нового элемента иттрия. Много работал в области редкоземельных элементов. На рисунке — медаль Гадолина, присуждаемая за выдающиеся исследования в области редких земель
В 1879 г. из окиси иттрия были выделены окислы еще трех элементов — иттербия, тулия и предсказанного Менделеевым скандия. А в 1907 г. к ним прибавился еще один элемент — лютеций.
Это единственный случай в истории науки: один минерал, причем редкий минерал, оказался «хранителем» семи новых элементов.
С позиций современной химии этот факт легко объясним: электронное строение атомов редкоземельных элементов — а к ним относится скандий, иттрий, лантан и 14 лантаноидов — очень сходно. Химические свойства их, в том числе свойства, определяющие поведение элемента в земной коре, трудноразличимы. Очень близки размеры их ионов. В частности, у иттрия и тяжелых элементов семейства лантаноидов — гадолиния, тербия, диспрозия, гольмия, эрбия, тулия — размеры трехвалентного иона практически одинаковы, разница в сотые доли ангстрема.
Трудность выделения иттрия (как, впрочем, и любого из его аналогов) привела к тому, что на протяжении десятилетий свойства этого элемента оставались почти не изученными. Первый металлический иттрий (сильно загрязненный примесями) получен Фридрихом Вёлером в 1828 г., но и через 100 лет плотность иттрия не была определена достаточно точно. Даже состав окиси иттрия никто не определил верно до появления периодического закона. Считали, что это YO; правильную формулу — Y2O3 — первым указал Менделеев.